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ABSTRACT 
Motorway owners and operators are now using improvements in travel time reliability (a    
reduction in travel time variability) as an added benefit of motorway use and a key performance 
indicator (KPI).This paper introduces a novel use of the Fundamental Diagram (FD) to monitor 
travel times and performance on a motorway. The methodology is tested in a case study in 
collaboration with Leighton Contractor’s on a new motorway. KPIs on travel times are to be used 
to financially incentivise the operator to maintain a high level of travel time reliability. The KPI 
definitions that were initially proposed were based on criteria that would have led to penalties 
being applied even under normal operation.  Hence a more robust and equitable approach to 
KPI calculation was required. 

We report on the design and development of such an approach, which has been accepted by all 
stakeholders in the project. It is based on the Fundamental Diagram, which is used to define a 
base line for equilibrium traffic conditions. Calculation of the Fundamental Diagram is based on 
a recently proposed model. We then construct an envelope around the FD. The boundaries of 
the envelope signify normal or “healthy” traffic conditions. Travel time KPIs penalties are only 
triggered for traffic flow data points that are outside the agreed “healthy” flow envelope. 

INTRODUCTION  
Traditionally, a road agency might value the benefit of a project by virtue of the fact that the 
project was delivered as designed and therefore it is inferred that it has delivered the benefit 
that it promised in the economic business case.  With the proliferation of the use of private 
funding models to infrastructure procurement, one aspect being increasingly desired is to 
procure outcomes that align to the benefit that the project is intended to provide. In other words, 
the measure of success is  that the investment has paid off at the strategic level. Such 
measures might include improvements in travel time, reductions in road trauma, improved asset 
availability or even stimulus of economic activity. With that approach taken to procurement, it 
requires the contract to be anchored in performance-based KPIs that are determined prior to 
contract execution, long before the road is designed, let alone constructed. 

In this case the issue was to develop a robust and equitable method for setting a Travel Time 
KPI on a new motorway due to start operating in 2020.  

The problem was how to position a travel time KPI that best delivers client and contractor 
outcomes without requiring a significant risk premium being priced into the contractor’s bid. 
Specifically the contractor needed an approach that will use the highly detailed traffic flow data 
that will be available to administer a KPI that provides the motorway owner assurance that the 
contractor is incentivised to protect travel time reliability.  The KPI definitions that were initially 
proposed were based on criteria that would have led to penalties being applied even under 
normal operation.  Hence a more robust and equitable approach to KPI calculation was 
required. 

In collaboration with Leighton Contractors, a methodology for setting the KPI was developed, 
which has been accepted by all stakeholders in the project. It is based on the Fundamental 
Diagram, which is used to define a base line for equilibrium traffic conditions. The core of the 
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approach is to construct an envelope around the Fundamental Diagram curve which signifies 
normal traffic conditions. Travel time KPIs penalties are only triggered for traffic flow data which 
falls below the FD envelope and is an indicator of abnormal traffic conditions.  

From a practical point of view, an operational system to assess travel time performance using 
the Fundamental Diagram needs the following: 

1. A methodology for fitting the Fundamental Diagram curve from traffic flow data 

2. A methodology for deriving critical density 

3. A transparent methodology for setting bands or “envelopes” that distinguish between 
satisfactory and non-satisfactory travel times 

4. How the methodology will estimate the envelope where there are insufficient data points 
above critical density 

We present the proposed methodology of using FD for KPI calculation which satisfies all the 
four points above. The  paper is structured as follows: In section 2, we review the background 
on the Fundamental Diagram (FD) as well as a detailed example on estimating an FD flow-
density model applied to data from the a motorway in Brisbane, which is expected to be similar 
to the new motorway in terms of traffic parameters. Section 3 has a thorough discussion of the 
methodology for setting envelopes around the FD curve applied to this sample data. Finally, a 
conclusion is given in Section 4.  

THE FUNDAMENTAL DIAGRAM AND “HEALTH” OF TRAFFIC 
FLOW: THEORETICAL AND EMPIRICAL BASIS 
Since the 1930’s, the Fundamental Diagram (FD) has been used as the description of the 
relationship between flow rate and density in steady state for uninterrupted traffic flow on a 
motorway. This type of FD is called flow-density FD. From the relationship:  

Flow = density * space mean speed 

the flow-density FD can be represented as a speed-density or flow-speed FD in a 
straightforward way. The existence of the Fundamental Diagram (FD) and the relationship 
between speed and density (or equivalently, flow and density or speed and flow) has been 
supported in hundreds of traffic observations and studies around the world in the last 70 years. 
The FD has become the fundamental law of traffic flow. 

Historically, the concept of FD was prosed from experimental observations by US traffic 
engineer Bruce Greenshields in 1933, who postulated a linear relationship between speed and 
traffic density. However it has long been observed that a linear specification often describes the 
data poorly. For example, quite often the FD has a crucial point at which the traffic changes from 
free-flow to congested condition and correspondingly the functional relationship changes.  

Various other functional relationships between the speed  𝑉 and density 𝑘 have been proposed 
to account for the observable data features (see Table 1 below for summary). Figure 1 shows 
the empirical performance of some of the models in Table 1 using a data for a route in Atlanta, 
Georgia. The original model of Greenshields clearly doesn’t fit the data very well. More complex 
models with higher number of parameters are a better fit.  
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Table 1: Speed-Density FD Functional Forms  

 
Source: Wang et al. (2013) 

 
Source: Wang et al. (2013) 

Figure 1: Empirical Fit of Single Equation Models for the Fundamental Diagram 

The paper by Wang et al. [2013] proposes a flexible specification for the speed-density 
fundamental diagram. It has major advantages over other existing models: 

1. It can fit the data with reasonable accuracy although it is a single regime model. 

2. The curve that produces has desirable mathematical properties (e.g. it is smooth and 
bounded – doesn’t go to infinity or zero).  

3. The parameters of the model   have a clear interpretation.  
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The equation for the speed-density relationship is: 

(1) 𝑉 = 𝑣𝑏 + 𝑣𝑓−𝑣𝑏

�1+𝑒𝑥𝑝�𝑘−𝑘𝑡𝜃1
��

𝜃2 

We will refer to the above specifications the WLCN model. The parameter 𝑣𝑓 is free flow speed 
and  𝑣𝑏 is the average travel speed at stop and go condition. 𝜃1 is a scale parameter which 
describes how the curve is stretched out over the whole density range, 𝜃2 is a parameter which 
controls the lopsidedness of the curve. The parameter 𝑘𝑡 is the turning point that the speed-
density curve makes the transition from free-flow to congested flow.  

Figure 2 below shows the fit of the model to the same data as in the previous examples. 

 
Source: Wang et al. (2013) 

Figure 2: Empirical of the Wang et al. (2013) Model for the Fundamental Diagram 

Visual inspection of the graph reveals that a very good fit even at very high densities. Authors of 
the paper test the model over wide range of other traffic data sets, where it is shown to have 
good a similar performance. 

Given the flexibility and interpretability of the model, it was chosen to be used for derivation of 
the benchmark FD for the new highway.  To conclude this section, we use apply the data from a 
motorway in Brisbane which is expected to have similar traffic conditions as the new motorway.   
In the next section we describe in detail our methodology for envelope fitting using the sample 
FD as an example. 

From a practical point of view, we choose to work with the flow-density since it was deemed that 
it is more well-known and accepted type of FD than the speed-density FD. The WLCN model 
can be easily re-written as a flow-density relationship: 
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(2) 𝐹 = 𝑣𝑏 + 𝑣𝑓−𝑣𝑏

�1+𝑒𝑥𝑝�𝑘−𝑘𝑡𝜃1
��

𝜃2 𝑘 

The equation above is the mathematical relationship between the flow and density which 
describes the average empirical relationship between the two variables.  We have to infer the 
parameters of the WLCN model from a set of noisy data.  

Usually, this is done by using the Non-Linear Least Squares (NLS) Optimization which can be 
applied to any type of functional relationship between flow and density:  

(3) 𝐹 = 𝑓(𝑘|𝜃) 

where 𝜃 is the set of parameters of the function 𝑓(𝑘|𝜃). The parameters 𝜃 are obtained by 
minimizing the sum of the squared differences between observed and predicted values for the 
speed: 

(4) �𝐹1� − 𝐹1�
2 + ⋯+ �𝐹𝑛� − 𝐹𝑛�

2 where  𝐹𝑠� = 𝑓(𝑘𝑠|𝜃). 

Efficient algorithms for solving this type of problems such as Levenberg-Marquart method exist 
(William; Teukolsky 2007)  

We estimate the WLCN model for the sample data via the Levenberg-Marquart method 
implemented in the Matlab optimization toolbox. Note that optimization algorithms usually 
require an initial value or set of values for the parameters which serve as a starting point in the 
search for the optimal parameter value.  

In the current case, initial values have to be provided for 𝑣𝑓 - the free flow speed, 𝑣𝑏 - the 
average travel speed at stop and go condition, 𝑘𝑡  the turning point that the speed-density curve 
makes the transition from free-flow to congested flow as well as for  𝜃1 and  𝜃2.  

It is important to carefully select the initial parameter values in order to make sure that the global 
minim of the target function (4) is found instead of a local one. Non-linear optimization is an art 
and a science at the same time, and it is hard to give a universal recipe which works in all 
cases.    

Visual inspection of the flow-density data in the Figure 3 below strongly suggests that the FD 
curve will be a simple linear line in all cases. Indeed, if a non-linear fit of an FD curve produces 
more complex shape this will strongly suggest a mistake in the estimation.  

Extensive experiments suggest that the optimal solution of the curve fitting problem is achieved 
when 𝜃2 = 0, which means that there is no lopsidedness in the FD curve. In that case, the 
speed-density FD collapses to a horizontal line with height given by the free flow speed 𝑣𝑓, and 
the flow-density FD collapses to linear line emanating from (0,0) point with an incline determined 
by the free-flow speed.  

That is, the free-flow speed 𝑣𝑓 is the only parameter that can be estimated from the data and its 
fitted value is 𝑣𝑓 = 74.18 𝑘𝑘/ℎ.  
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Figure 3: Flow-Density FD for Sample Motorway Estimated from the WLCN Model. 

Note that the empirical data doesn’t suggest the existence of critical density as the parameter 𝑘𝑡 
can’t be estimated. In this instance, we recommend to use the (expected) critical density figure 
given by the US Highway Capacity Manual (HCM 2010) of 28 veh/km/lane.  

CONSTRUCTING A PERFORMANCE ENVELOPE ON THE 
FUNDAMENTAL DIAGRAM 

In this section we describe in detail how to construct an envelope around the flow-density FD 
curve. A simple method to extend the envelope when sufficient data points are not available is 
also proposed. The data and the FD curve estimation from the previous section are used as an 
example.  

We assume that the Fundamental Diagram curve 𝐹 = 𝐹𝐹(𝑘) is known and estimated from the 
data (se per the previous section). Mathematically, the envelope is defined by two functions  
𝐹+ = 𝐹𝐹+(𝑘) and 𝐹− = 𝐹𝐹−(𝑘). The first function defines the upper bound of the envelope and 
the second function defines the lower bound of the envelope. By definition the following 
relationship must hold: 

(5) 𝐹− = 𝐹𝐹−(𝑘) < 𝐹 = 𝐹𝐹(𝑘) < 𝐹+ = 𝐹𝐹+(𝑘) 

since the FD curve must be positioned between the lower and upper bands of the envelope.  
For a given density level 𝑘, the value of 𝐹+ = 𝐹𝐹+(𝑘) determines the upper range of the speed, 
level which we can assume represents normal traffic conditions. Similarly, and more importantly 
the value of 𝐹− = 𝐹𝐹−(𝑘) represents the lower range of the speed level which we can assume 
represents normal traffic conditions. The area encompassed by these two functions represents 
the normal traffic conditions, area above the envelope represents better than normal traffic 
conditions, and area below the envelope represents worse than normal traffic conditions.  

The KPI trigger area (KPI zone) is the one below the envelope and it is completely determined 
by the function 𝐹𝐹− = 𝐹𝐹−(𝑘). Obviously, defining the upper bound of the envelope is irrelevant 
with respect to the derivation of the KPI zone. For completeness and clarity of exposition, we 
will present both calculations below. 

Instead of working with the envelope defined by {𝐹𝐹−(𝑘),𝐹𝐹+(𝑘)} it would be easier to work 
with the width of the band. The lower and upper widths are defined by 𝑤− = 𝐹𝐹(𝑘) − 𝐹𝐹−(𝑘)  
and 𝑤+ = 𝐹𝐹+(𝑘) − 𝐹𝐹(𝑘), respectively.  

The basic idea is to define normal traffic conditions on the Fundamental Diagram as a range of 
deviations around the Fundamental Diagram curve. This is done using a two-stage process. 
First, we use a non-parametric approach to obtain an initial envelope around the FD curve. The 
resulting envelope however is very noisy. To smooth out the noise, a linear function is fitted to 
the width of the envelope in the first stage, and on that basis the final envelope is computed.  
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Stage 1: derivation of a non-parametric envelope around the fd 
curve  
Here we describe how to derive the first-stage envelope around the FD. We denote the initial 
lower and upper envelopes by 𝐹𝐹−∗(𝑘) and 𝐹𝐹+∗(𝑘). To fix things, let us consider the splice of 
the Fundamental diagram representing densities between 0 and 2 veh/km:  

 
Figure 4: Fundamental Diagram Curve for Densities < 2 veh/km. 

Since we are mostly interested in defining the lower bound of the envelope, consider the 
observations below the FD curve only (later we will briefly comment on defining the upper bound 
which is done in a similar fashion). There are 1750 observations of flow and density in total: 
(𝑑1, 𝑓1),…, (𝑑1750,𝑓1750).  

 
Figure 5: Fundamental Diagram for Densities < 2veh/km and flow rates below the FD 

curve. 
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In this particular segment we are interested in defining what is an acceptable level of deviations 
from the FD curve in terms of distance from it. We start with defining this level for the point in 
the middle of the segment, which is 1 veh/km.  

We consider the set of all distances of the observations below the curve:  

(6) 𝑤1∗ = 𝐹𝐹(𝑑1) − 𝑓1, … ,𝑤1750∗ = 𝐹𝐹(𝑑1750) − 𝑓1750 

On the basis of these distances for densities in the interval [0,2], we can define what an 
acceptable distance would be for a flow level when the density is 1 veh/km (middle of the 
interval). A simple and intuitive way is choose the distance as the upper percentile of the series 
above. For example, fix the 95% percentile for which 95% of the observations in the sequence 
(5) (in that case 95% of 1750 is 1662.2 and we take 1663) fall below it.  

In the current case, the 95% percentile is 19.62. Thus, the initial lower envelope 𝐹𝐹−∗(1) at 
density 1 veh/km is set at: 

(7)  𝐹𝐹−∗(1) = 𝐹𝐹(1) − 19.62 = 74.18 − 19.62 = 54.56 

Similar approach can be taken to computing the value of the lower envelope for any other 
density.  Mathematically, the method for computing the initial envelope is based on a centred 
sliding window with length 2.  First, we have to fix an end point 𝐾  on the x-axis where we deem 
there are sufficient observations to compute the envelope. In the case of our sample data, such 
point is given by the density value of 22 veh/km. Since the window has length 2, the starting 
point for the window right corner is 2 and the end point is 𝐾. The right corner window is 
gradually moved from the two end points (2 and 𝐾), and the value of the envelope is computed 
for the mid-point of the window. More specifically, if the right corner of the window is 𝑘 ∈ [2,𝐾], 
then the observations below the Fundamental Diagram curve which fall below the FD curve with 
densities between 𝑘 − 1 and 𝑘 − 1 are considered:  

(𝑑1, 𝑓1),…, (𝑑𝑁 , 𝑓𝑁) : 𝑘 − 2 ≤ 𝑑𝑖 ≤ 𝑘, 𝑓𝑖 ≤  𝐹𝐹(𝑑𝑖) 

The 95% percentile value 𝑤𝑘∗ of the sequence of distances 𝑤1∗ = 𝐹𝐹(𝑑1) − 𝑓1,.., 𝑤𝑁∗ = 𝐹𝐹(𝑑𝑁) −
𝑓𝑁 is computed . Then the value of the lower band of the envelope at the centre of the window is 
given by:  

(8) 𝐹𝐹−∗(𝑘) = max (𝐹𝐹(𝑘) − 𝑤𝑘∗, 0) 

Note that since the sliding window starts at 2 on the x-axis, then the first point of the envelope 
which can be computed is for the midpoint of the start which is (2+0)/2=1.  

To calculate the envelope in the interval [0,1], the width of the envelope at 1 given by 𝐹𝐹(1) −
𝐹𝐹−(1) can be used as the width of the envelope in the beginning: 

(9) 𝐹𝐹−(𝑘) = 𝑚𝑚𝑚�𝐹𝐹(𝑘) − �𝐹𝐹(1) − 𝐹𝐹−(1)�, 0�, 𝑘 ∈ [0,1] 

Similarly, the end point of the sliding window is 𝐾 and the midpoint of the last sliding window is  
(𝐾+𝐾−2)

2
= 𝐾 − 1.  This is the last value at the x-axis, for which the lower bound of the envelope 

can be computed. To calculate the envelope in the interval [𝐾 − 1,𝐾] the width of the envelope 
at 𝐾 given by 𝐹𝐹(𝐾 − 1) − 𝐹𝐹−(𝐾 − 1) can be used: 

(10) 𝐹𝐹−∗(𝑘) = 𝑚𝑚𝑚�𝐹𝐹(𝑘) − �𝐹𝐹(𝐾 − 1) − 𝐹𝐹−(𝐾 − 1)�, 0�, 𝑘 ∈ [𝐾 − 1,𝐾] 
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Figure 6: Starting Point of the Sliding Window, Sliding Window and End Point of the 

Sliding Window. 

The upper bounds of the envelope can be computed in exactly the same way. For brevity, and 
given that the exact shape of the upper part of the envelope is irrelevant to the calculation of 
KPI trigger zones, this is not going to be discussed further.  Below is a graphical representation 
of the result of the procedure above for the initial upper and lower envelopes based on the 95% 
percentile.  

 
Figure 7:  Initial Envelope around the FD Curve based on the 95% percentile. 
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Stage 2: derivation of a parametric envelope around the fd curve with a 
linearly expanding width 

As it can be seen, the initial envelope is very noisy and tends to show up and down fluctuations 
around the FD curve. From a practical point of view, we would like to have an envelope with the 
following two properties: 

1. Smooth boundaries which follow the shape of the FD curve 
2. Expanding width as the density increases 

A natural approach to derive such envelope from the initial envelope is to fit a linear function to 
the width of the initial envelope and use this function to derive the width of the final envelope.  
Mathematically, we define the width width(k) of the (lower) envelope as a linear function of the 
density: 

(11) 𝑤𝑤𝑤𝑤ℎ(𝑘) = 𝑎 + 𝑏 ∗ 𝑘 

The lower bound of the envelope is defined by:  

(12)  𝐹𝐹−(𝑘) = 𝑚𝑚𝑚(𝐹𝐹(𝑘) − 𝑤𝑤𝑤𝑤ℎ(𝑘), 0) 

The coefficients 𝑎 and 𝑏 are estimated from the initial envelope 𝐹𝐹−∗(𝑘). The idea is to try to fit 
a linear function of the type (11) to the widths of the initial lower envelope 𝐹𝐹(𝑘) − 𝐹𝐹−∗(𝑘).  

In the current case, we consider the density range of the Fundamental Diagram from 0 to 22 
veh/km. We partition this range into small intervals with equal size ∆ with endpoints  𝑘1 < ⋯ <
𝑘𝑁 , where 𝑘𝑖 = 𝑖 ∗ ∆.  The example here is for interval size equal to 0.01 veh/km which 
translates into 𝑁 = 22

0.01
= 2200 intervals (the method is rather insensitive to the number of 

intervals as long as it is sufficiently large e.g. 𝑁 > 100. The current number of intervals is rather 
conservative).  

We can compute the widths of the initial envelope at the density points 𝑘𝑖: 𝑤𝑖∗ = 𝐹𝐹(𝑘𝑖) −
𝐹𝐹−∗(𝑘𝑖). A linear regression given by (11) is fit to the widths 𝑤𝑖∗ using the standard Least 
Squares Method.  This results in the following estimation for the 𝑎 and 𝑏: 𝑎 = 7.56 and 𝑏 = 9.23. 
The lower bound of the envelope can now be easily obtained from the formula (12).  The same 
approach is applied to calculating the upper bound of the envelope. The new envelope with 
linearly expanding width is shown in the graph below: 

 
Figure 8:  Envelope around the FD Curve based on the 95% percentile. 
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The envelope bands can be easily extended up to an arbitrary point assuming the linear 
specification (11) for the width.  Let is consider a hypothetical example where the envelope is 
only defined for densities up to 22 veh/km but the FD curve can be defined (Figure 9) for 
densities up to 37 veh/km and the curve has a critical density at 28 veh/km.  

Extrapolating the envelope bands using the linear specification results in the envelope shown 
below in the Figure 9. 

Figure 9:  Extrapolation of the Envelope around the FD Curve. 

CONCLUSION  
In this paper we presented a novel approach to using the Fundamental Diagram (FD) for the 
purpose of calculating travel time KPIs on a new motorway. The methodology is based on the 
idea that the FD signifies “ideal” equilibrium traffic conditions. Using traffic flow theory and 
empirical data to define a “performance” envelope around it, we can classify the normal traffic 
conditions as observations inside the envelope.   

Correspondingly, “abnormal” traffic conditions have observations falling outside and below the 
envelope. In this particular case, the Fundamental Diagram approach was applied as a pre-
condition to the underlying travel time requirement for the project, which linked directly to the 
assumed travel time saving used in the economic business case. By adopting this approach, it 
removed the risk of the unknown for Leighton Contractors in committing to the contract, while 
providing the Road Agency with a ‘hard’ KPI relating to the benefit they sought to achieve 
through the project. 

Our approach is oriented towards implementation for motorway operations. We believe that it 
can be successfully applied to other existing or new motorways. Besides the novel use of the 
FD, a useful contribution is the proposed methodology for fitting an envelope around the FD. 
The envelope construction procedure is technically rigorous and at the same time simple 
enough that the concept does not require skills in advanced mathematics or statistics to be 
understood and used. 
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