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1. Introduction 

The process of calibrating and validating all types of transport simulation models (micro, 
meso or macro) is a labour intensive and costly process. There have been a number of 
theoretical advances in methods for efficient testing and running simulation experiments that 
could be applied to the calibration and validation process. However they have not yet 
penetrated to actual modelling or transport simulation practice.  
 
Our detailed review of the transport research literature showed that many of the state-of-the-
art methods for validation and calibration are focused on the following: improving the Origin- 
Destination (OD) matrix estimation process; optimization algorithms to automate calibration; 
and Sensitivity Analysis on the input-output relationships of the model’s parameters. While 
these methods are scientifically correct they are complex to understand and apply in practice, 
as the modeller needs an advanced level of mathematics to use them.  Our consultation with 
simulation practitioners and our own experience in implementing changes to modelling 
practice [Shteinman 2010, 2011, 2012] lead us to expect a low probability of acceptance by 
practitioners of these methods. 
 
As an alternative we draw on simpler statistical tools previously used in general simulation, 
and apply them to traffic simulation models.  They can be easily  applied to two related 
fundamental problems in validation and calibration: 
 
Problem 1) Calibrating a model to base data this is itself highly variable. Usually base data 
has a high degree of uncertainty in how representative it is of the system being modelled; and 
 
Problem 2) During validation: Uncertainty in how well the model represents the underlying 
structure of the traffic dynamics in reality. For example: the formation and dissipation of 
congestion. 
 
The use of these statistical tool is illustrated by a detailed discussion of selected case studies 
from the transport research literature.  For Problem 1, drawing from the work of Kim et al. 
[2005], we show how  non-parametric distributional tests are used to compare the actual 
distributions of travel times in order to achieve better model calibration. This approach is 
contrasted to the usual practice of calibration of traffic variables to their Mean values.   
 
Although the example uses travel times, the same approach can be applied to any other traffic 
metrics of interest. To emphasize the importance of considering the whole distribution, 
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instead of only its mean, we present and discuss visual and numerical statistical for travel 
times and traffic flow distributions, which also includes a case study of Melbourne travel 
times data.  
 
Problem 2 is tackled by employing so called “meta-models” from the work of [Toledo, 2004]. 
Meta-model in this context is a model with a structure outside the structure of the validated 
model.  The meta-model for the data generated by the model (simulated data) and the meta-
model for the actual field data are compared for similarity using formal statistical tests.  
 
This approach is illustrated by employing the  Fundamental Diagram as a meta-model, and   
estimating Fundamental Diagram equations of observed data and simulated outputs. Then 
they are compared in terms of the similarity of important relationships between traffic 
parameters. E.g. the similarity in the “Flow-Speed” relationship between the observed data 
and the simulation. [Toledo, 2004]. 
  
Using the tools of simple visual data inspection (Explanatory Data Analysis), non-parametric 
distributional test and  Meta-modelling does not require knowledge of advanced statistics.  
Such methods  can be immediately introduced into modelling practice and yield 
improvements in the efficiency and reliability of model calibration and validation, at very low 
cost. 
 
The rest of the paper is organized as follows: In Section 2 we give a background on the two 
problems mentioned above and how they have a negative effect on the quality and reliability 
of calibration and validation.  The empirical properties of traffic volumes and travel times 
distributions, which are one of the most important traffic variables are discussed.  
 
A more detailed case study of travel times distributions from the Melbourne arterial network, 
conducted by the Industrial Sciences group for Vicroads ,  using GPS-based travel time data, 
is presented. It clearly illustrates the complex the nature of  travel times distributions and 
gives  support to the case for using actual distributions (not point estimates) when calibrating 
a model to base data. 
 
Section 3 has a discussion of calibrating models to the whole distributions of traffic variables 
(Problem 1). Section 4 has a discussion of using Meta-models in validation (Problem 2).  

2. Calibration and Validation- Existing Methods 

There is general agreement amongst simulation researchers and practitioners that the 
reliability of any simulation model depends on how well the field conditions are captured by 
the parameters in the model. Calibration is the process by which the parameters of various 
components of the simulation model are set so that the model will replicate observed traffic 
conditions as accurately as possible.  

Calibration and Validation can be defined respectively, as:  

Calibration is defined as the process of adjusting the model parameters, network and demand 
to reflect observed site data and/or conditions. The calibration process aims to produce a 
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model that is sufficiently refined to provide reliable forecasts that will be able to satisfy the 
study objectives. 
The validation process compares model outputs with observed data that has not been 
previously used in the calibration process. Validation is therefore an independent verification 
to confirm that the model has been accurately calibrated.  
 
Hence calibration has the objective of finding the values of the parameters that will produce a 
valid model, while validation provides an answer to the question: Does the models’ 
predictions faithfully represent reality? 
 
Many case studies describe the process of calibration and validation as a sequential and 
iterative process. Calibration requires the following four steps:  
 
(1) Calibration of driving behaviour models; 
(2) Calibration of route choice model; 
(3) OD estimation; 
(4) Model fine-tuning. 
 
Austroads [2006] adapts methods from the Modelling Guidelines of the RMS , and FHWA 
recommended practices,  to describe the process as: 
  

1. Network depiction 

2. Calibrating capacity 

3. Calibrating demand 

4. Calibrating performance 

One of the most time consuming and difficult jobs in calibration is the OD Matrix estimation 
process. However a significant factor contributing to this difficulty occurs prior to matrix 
estimation – the collection of base data. Matrix estimation requires adjustment of the Origin-
Demand matrices to match traffic counts.  Then a separate and independent set of traffic 
counts is used for validation. Both traffic count data sets have inherent variability and 
uncertainty which is then propagated through the calibration and validation process. 

 
Model validation is the final stage of checking if each component adequately reproduces 
observed travel characteristics and if the overall performance of the model is reasonable. This 
is done by comparing traffic flows outputted by the model against observed counts. To  
quantify the comparison two measures of “goodness-of-fit”, GEH and RMSE criteria  are 
widely used by practitioners, and recommended in Guidelines in the UK, Australia, and the 
US.  
 
The GEH criterion is defined as:  
 

ܪܧܩ ൌ ඨ
ሺܯ െ ܱሻଶ

ሺܯ ൅ ܱሻ/2
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where M and O, are the estimated and observed volumes, respectively. Although the formula 
above is similar to the well-known chi-square statistics, GEH is not a formal statistical test but 
a measure of goodness-of-fit which is less sensitive to large discrepancies between predicted 
and observed volume than other measures (e.g. absolute difference). As such, GEH has been 
proven to be useful in practical applications.  
 
 
The Root Mean Square Error (RMSE) is a statistical measure of the correlation between the 
entire count data set and the predicted model volumes:  
 
 

ܧܵܯܴ ൌ
ට∑ሺ ଴ܸ െ ௠ܸሻଶ

ܥ െ 1
∑ ௢ܸ
ܥ

ൈ 100 

 
where ଴ܸ and ௠ܸ are the observed and modelled vehicles per hour, respectively and ܥ is the 
total number of count locations [RMS, 2013, p.84]. Other calibration targets used by RMS, 
FHWA, and endorsed by Austroads are link flows on cordon/screenline, individual link flows 
as well as travel times [Austroads, 2006, p.19].  
. 
 
For calibration acceptance criteria or targets, most guidelines have the following consensus: 
 

a GEH index of less than 5.0 in a measurement point is considered a good match 
between the modelled and observed volumes, and 85% of the volumes in a traffic 
model should have a GEH less than 5.0 for all measurement points [Austroads, 2006,  
p.19] 

 
Unlike the GEH statistic, the RMSE applies to the entire comparison data set and is expressed 
as a single value. Although the GEH mathematical form is similar to a chi-squared test, it is 
not a true statistical test. Rather, it is an empirical formula that has proven useful for a variety 
of traffic analysis purposes. The main trait of the GEH formula is that, unlike the relative 
error, differences in high volumes are relatively more important that in lower volume.  Thus 
the GEH measure is a form of Chi-squared statistic that is designed to be “tolerant” of larger 
errors in low flows. The reason for introducing such a statistic is the inability of either the 
absolute difference or the relative difference to cope over a wide range of flows. 
 
 
 
 
 

2.1 Traffic Volume Variability and Calibration/Validation  
 
The RMS guidelines note that “Traffic volumes are often used as a key statistical indicator 
that the model is sufficiently calibrated as they provide an easily measurable dataset both in 
the model and on site” [RMS, 2012, p.103].  
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However traffic volumes and travel times are highly variable and point estimates is not a good 
indicator of “similarity “between model and reality. Empirical evidence suggests [Ref Guide 
to benchmarking operations and performance measures, TARB, Appendix D, available at 
http://www.catt.umd.edu/sites/default/files/documents/final_report_compiled_v26.pdf ]  that 
the traffic volumes have  complex dynamics, with a non-trivial relationship between mean 
traffic volumes and the variability of traffic volumes.  
 
The report uses data for several arterial links in Northern Virginia, USA and traffic volume 
measured on the basis of traffic counts in 15-minutes intervals.  
 
  Coefficient of Variation of 15-minute Volume Counts 
Volume  
(veh/hr/ln) 

Average  Median  70th Percentile 80th Percentile

0‐200  0.92  0.93  0.97  1.00 

200‐400  0.25  0.24  0.28  0.29 

400‐600  0.16  0.15  0.17  0.18 

600‐800  0.13  0.12  0.13  0.14 

800‐1000  0.12  0.11  0.12  0.13 

1000‐1200  0.13  0.08  0.09  0.13 

1200‐1400  0.15  0.11  0.14  0.20 

1400‐1600  0.06  0.06  0.07  0.07 

1600‐1800  0.06  0.06  0.06  0.06 
 
 
Table 1  Coefficient of Variation of 15-minutes volume counts for arterials  
Credit : Tarnoff et al.  (2008): 
http://www.catt.umd.edu/sites/default/files/documents/variance_analysis_v1.pdf 
 
 
The table above gives statistics for the Coefficient of Variation (COV) of traffic volume from 
the report. The Coefficient of Variation is defined as the ratio of Standard Deviation of traffic 
volume  to the mean value of the traffic volume. COV statistics are presented for different 
traffic conditions ranging from light (volume between 0 and 200 veh/hr/ln) to heavily 
congested (volume between 1600 and 1800 veh/hr/ln).  
 
It can be seen that the COV and correspondingly, the Standard Deviation of traffic volume 
varies substantially between traffic conditions.  In uncongested states, the Standard Devotion 
is high relative to the mean traffic volume, but the relative difference between the two sharply 
decreases when the traffic conditions become more congested.  This suggests that the traffic 
volumes have complicated behaviour and accounting for some of their empirical features 
might be of benefit when calibrating models.  
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The outcome of validating a properly calibrated model can be quantified as [Barceló, 2011] 

P{ |”reality” – simulation prediction| < d } > a 
where  
d= tolerable difference = how close is the model to reality  
a=level of assurance = how certain are we of this?  

We are concerned with determining the factors in simulation modelling  that have most effect 
on the level of assurance; That is the measure of how certain we are of the observed traffic 
counts that are used to represent reality. This in turn is a quality measure of the  base data. 
Quality in terms of level of variability between days of the data period, variability within the 
day, seasonality, outliers, and errors in the data collected 

It is important to note that the observed data which is used to represent “reality” is random as 
it is a randomly selected sample from a population of possible days and traffic conditions. The 
simulated output is also randomly generated. 

2.2 Features of Travel Time Distributions and Calibration/Validation 

Travel time are another very important metrics used in model calibration. Again, the usual 
practice is to concentrate on fitting the mean of the travel time distribution (in one form or 
another) and completely disregarding the shape of the distribution.  
 
However, travel time distributions have complex shape and additionally they might change 
with traffic conditions. Hence, summarizing the dynamics of travel times by a single value 
(e.g. mean) would be a great simplification and would bias the calibration process.  
 
The example from Van Lint et all. (2008) neatly illustrates this point. The authors consider 
the travel times on a 6.4 km freeway stretch in Netherlands in four different conditions: free-
flow, congestion onset, congestion and congestion dissolution. 
 
The corresponding empirical distributions are shown in the Figure 1 below. It can be seen that 
in free-flow and congested conditions, the travel time distribution is symmetric (with short 
width in free-flow condition and wider width in congested condition). In this case standard 
deviation would be sufficient to fully describe the dispersion of the travel times. However, in 
the onset of congestion as well as in the moment of congestion, the travel times are clearly 
skewed on the right.  
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Figure 1 Travel Time Distributions in Different Traffic Conditions 
Credit: van Lint et al. (2008) 

 
2.3 Case Study of Travel Times   

In another example of the complexity of travel times, more relevant to Australian context, we 
present a brief analysis of a travel time data sample which closely follows Shteinman and 
Lazarov [2014]. The original data is collected by Intelematics and is derived from vehicles with 
GPS’s. Our intention is to show how to use simple visual statistics (Explanatory Data 
Analysis), when considering the whole travel time distributions in the calibration process.  
 
The data consists of travel times for 6 links along the South Road in Melbourne defined as 
intersections of the South Road with 6 roads (in order): Nepean Highway, Station Street, 
Jasper Road, Tucker Road, Chapel Road, East Boundary Road, Chesterville Road. The data 
spans the interval 1 Jan 2013 to 18 Apr 2014 for each day of the week (total of 447 days) with 
six days of missing data.  Average travel times as well average speeds are available for each 
of the 96 15-minutes intervals in the 24 hour day.  

 

First, sample statistics for the intra-day mean and Standard Deviation are computed. Visual 
inspection of the data reveals that it is noisy and has numerous spikes, which might bias the 
Standard Deviation (SD) estimation. For the sake of brevity, results for East Boundary to 
Chapel Road link are shown in Figure 2.  
 
In order to account for noise, we also compute a robust measure of the dispersion of the 
distribution, called Mean Absolute Deviation (MAD) which is analogous to SD, but it is more 
resistant to outliers (For a set of observations ݔଵ, … ,  ே  Mean Absolute Deviation (MAD) isݔ
defined as  ଵ

ே
∑ หݔ௝ െ หேܯ
௝ୀଵ ). 
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There is a clearly observable difference between the standard deviation (SD) and the mean 
absolute deviation (MAD). The SD plots are noisier, while MAD plots are smoother and also 
exhibit very similar intra-day pattern to the mean travel times plot. This suggests the presence 
of outliers which bias the SD estimates.  
 
Also, the mean travel times as well as the standard deviation clearly exhibit intra-day 
seasonality, both having markedly larger values during the time period [6:00 AM; 8:00 PM] 
and even higher values during peak hours. Interestingly, for other links we didn’t find 
evidence for higher mean/ standard deviation of travel time during peak hours relative to the 
time period [6:00 AM; 8:00 PM]. 

 
We also found that he shape of travel time distributions can vary significantly from link to 
link and time of the day. Overall, we found out that that the log-logistic distribution fits the 
data reasonably well. 
 
For example, in Figure 3, the histogram of the travel time distribution in the interval  [9:00 
AM; 9:15 AM]  as well as  best fit to the normal, log-normal and gamma distributions are 
shown  for the link Nepean Highway to Station Street. The graph clearly shows that the 
normal distribution doesn’t fit the data very well. In particular, there is a pronounced skew on 
the right-hand side. This is partially captured by the log-normal distribution, however the 
gamma distribution provides the best fit.  
 
The other feature of the graph is the observed spikes in the histogram. In this case, a very 
pronounced frequency of observations of mean travel times with value 35 seconds is observed 
(there are 34 such observations) while the number of observations with values between 32 and 
35 seconds , and between 35 and 37 seconds drops to 2 and 16, respectively. This clearly 
suggests an artificial filling of the data by the number 35.  
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 Figure 2: Mean Travel Time, Standard Deviation and Mean Absolute Deviation for 

East Boundary Rd to Chapel Rd to Link (688 mt.). 
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Figure 3: Histogram of the Mean Travel Time in the interval [9:00 AM; 9:15 AM] for 
Nepean Highway to Station Street Link 
 
 
From our brief discussion of the travel times data above, it is clear that there are (at least) two 
main issues which have to be dealt with: outliers and repeated observations. This emphasize 
the importance of EDA (Explanatory Data Analysis) and careful travel times data pre-
processing before using it for practical applications , such as model calibration and validation.  

3. Problem of Comparing Point Estimates – and a Potential Solution  

Historically, traffic simulation models have been calibrated to small data samples due to the 
expense of obtaining large data sets. Various metrics for the closeness between the simulated 
and observed data have been proposed and used (as discussed above). Most of them are 
based, in one form or another, on comparing the central tendencies. Central tendency of a 
random variability is loosely defined as its typical value (e.g. mean, median and so forth). 
 
The degree of which the model is deemed to represent “reality” is determined by how well it 
can match some measure for the Mean of the field data. This approach is only valid if the 
simulated output and the observed data come from the same probabilistic distribution, with 
possibly different mean values.  
 
However, there is no reason that this should be the case, and the recent increase in availability 
of traffic data, more specifically travel times data, allows the modeller to take into account the 
full distributional properties of the data of interest during calibration. 
 
It is shown below in Figure 4 that two sets of parameters can have a comparable degree of fit 
to the empirical data on the basis of some criterion for central tendency (mean), and yet they 
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can produce widely different distributions. Such an example is given in the paper by Kim et 
al. (2005) where two parameter sets of a VISSIM micro-simulation model are compared in 
terms of how well they can reproduce the actual travel time distribution. Both parameter sets 
produce comparable fit to the empirical data given by about 1%  MAER error. The travel time 
distributions are very different however . (Mean Absolute Error (MAER) is defined as 

ܴܧܣܯ  ൌ ଵ

௡
∑ ฬ

௫೔
ೞି௫೔

೚

௫೔
೚ ฬ௡

௜ୀଵ  

 
where ݔ௜

௦ is the simulated data and ݔ௜
௢ is the observed data. 

 

 
Figure 4: Comparison of  travel time distributions: a) simulated travel time distribution (1% 
MAER) – rejected and b) simulated travel time distribution  (1% MAER)– accepted 
Credit : Kim et al. (2005) 
 
The first travel time distribution is uni-modal and it is rejected by statistical tests for the 
closenness to the actual travel time distribtion, while the second travel time distribtion is bi-
modal and can’t be rejected by standard distributional tests.  
A simple way of avoiding choosing models’ parameters which result in distributions for the 
output varaibles that are substantailly different from the actual one, is to perform a test or a 
series of tests for the closeness of the two distributions (simulated and observed). The results 
of the distributional test(s) could serve as a filter of the pool of possible candidates for 
parameters (see figure below):  
 

 
Figure 5: Conceptualization of disaggregated performnace measures in calibration 
Credit : Kim et al. (2005) 
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The most widely used statistical test for similarities of distributions is the   Kolmogorov-
Smirnov (K-S) test, which is also used in the paper by Kim et al. (2005). The idea of the K-S 
test is to build the empirical cumulative distribution functions ܨത௒ሺݔሻ and ܨത௓ሺݔሻ from the 
observed realizations 1ݕ,… , …,1ݖ  and ݊ݕ ,  ,ܼ of two different random variables ܻ  and  ݉ݖ
respectively.  
 
We can test whether 1ݕ,… , …,1ݖ  and ݊ݕ ,  come from the same distribution by computing ݉ݖ
the magnitude of the maximal absolute difference ܦ between the empirical distribution 
functions. More formally, the K-S statistics ܦ  is given by:  
 

ܦ ൌ ത௒ሺ∙ሻܨ	|ݔܽ݉ െ	ܨത௓ሺ∙ሻ| 
 

	
Note that, the empirical distribution functions ܨത௒ሺݔሻ and ܨത௓ሺݔሻ are approximations for the 
cumulative distribution functions  ܨ௒ሺݔሻ and ܨ௓ሺݔሻ, which are defined as: 
 

ሻݔ௒ሺܨ ൌ Probሾܻ ൑  ሿݔ
	

ሻݔ௓ሺܨ ൌ Probሾܼ ൑  .ሿݔ
 
That is, the value of ܨ௒ሺݔሻ (ܨ௓ሺݔሻሻis the probability that the random variable ܻ (ܼ ) will be 
smaller or equal to ݔ.  
 
The empirical distribution functions are built from the observed observations in a 
straightforward way. For example, if ݕଵ

∗ ൑ ⋯ ൑ ݊ݕ
∗  is the ordered sequence of observations 

…,1ݕ ,  ሻ is a step function which starts at 0 andݔത௒ሺܨ the empirical distribution function ,݊ݕ
increases by a fraction of 1/݊ at each point ݕ௜

∗: 
 

௜ݕത௒ሺܨ
∗ሻ ൌ

݅ െ ݊
݊

 

 
The function ܨത௓ሺݔሻ is defined in a similar way. In the figure below (Figure 6), a graphical 
representation of the K-S statistics is shown. On the basis of the K-S statistics ܦ we can test 
whether the two distributions are identical at certain significance level ߙ. Intuitively, the 
higher the K-S statistics is, the most likely is that the two distributions are different.   
 
More formally, we can reject the hypothesis that the two distributions are the same (at 
significance level  ) if : 
 

ܦ ൐ ඨ
݊ ൅݉
݊݉

 ሻߙሺܭ

 
Here ܭሺ∙ሻ is a function of ߙ and pre-calculated  tables for it  exist.  The most common choice 
for significance level is 5 % (ߙ ൌ 0.05), in which case ܭሺߙሻ ൌ 1.36. 
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Figure 6.  Graphical representation of the K-S test. Source:  Kirkman, T.W. (1996) 
Statistics to Use, http://www.physics.csbsju.edu/stats/ 
 
It can be seen that the K-S test has a clear intuitive interpretation and also easy to perform. It 
can be used to filter out a simulation model’s parameter values which lead to erroneous 
outputs for the whole distributions of a variable.  
 

4. Use of Meta Models in Model Validation   

As described above, validation is the process whereby model outputs are compared to 
observed data that has not been previously used in the calibration process. Hence validation 
provides an answer to the question: Does the models’ predictions faithfully represent reality? 

 
To “faithfully represent reality” suggests the model can reproduce the underlying 
“behavioural"  features of the modelled network not just an average behaviour. A formal 
approach how to use this insight in practice is proposed in a theoretical paper by Toledo and 
Koutsopoulos hereafter the “TK method” [Toledo, 2004]. Their approach has not yet 
penetrated modelling practice (as far as is known by this author). We believe it has the 
potential to greatly enhance the validation process.  Our aim here is to explain their approach 
so it can become a useful tool for modellers in validation, without needing advanced 
mathematical skills. 
 
The TK method is  based on the use of Meta-models. In this context, a Meta-model is a model 
which captures an important feature of the behaviour of the network being modelled and at 
the same time, it is not part of the validated model.   
 
In other words, the meta-model is chosen to capture important relationships between traffic 
variables, which are not explicitly represented in the base model. Another useful feature to 
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have in mind when choosing appropriate meta-model for validation is that is relevant to the 
task at hand.  
 
To test whether the validated model is “correct”, the meta-model for the data generated by the 
model (simulated data) and the meta-model for the actual field data are compared for 
similarity using formal statistical tests.  
 
Examples of "behaviours or underlying structure" of a traffic network can include the  
relationships of flow-density or speed-density of a link or set of links in the network. These 
relationships are described by empirically derived equations and graphically displayed in the 
Fundamental Diagram of traffic flow. The TK paper has a detailed example of employing the 
speed-density Fundamental Diagram of traffic flow as a Meta-model for validation. 
 .   
The Fundamental Diagram is well known as a model of motorway traffic flows and recently 
as a way of describing macroscopic flow behaviour in some types of arterial networks 
[Geroliminis, 2008]. However it has not yet been used as a tool for validating simulations. 
 
 
First, the meta-model (e.g. the equation for the Fundamental Diagram) is estimated from the 
simulated data. Then, the same meta-model is estimated from the observed data.  Then a 
metric for “closeness” between the simulated and observed data is given by the difference 
between estimated parameters of the Meta models for the observed and simulated data. 
 
The benefit of the Meta-model approach is that it can overcome the problem caused by 
limited data. In simulation studies observational data is usually only available for 1 or 2 so-
called “representative days” and aggregated statistics are used (E.g. GEH and RMSE).  
  
Disaggregate data (e.g., observations of individual vehicles, 1-min sensor readings) can be 
used when fitting the Meta-model without having to aggregate observations (e.g., to 5-min 
intervals) as would be required if real and simulated outputs were directly compared [Toledo, 
p.147]. Thus the Meta-model approach uses more of the limited data available than the 
traditional approach which aggregates the data to compare Means (for example). 
 
For validation purposes, the test of “closeness” between Meta –models of the observed data 
and the simulation is given by the F-test (a simple statistical test for the equality of the 
estimated parameters of the two meta-models.). In outline the method works as follows: 
 
 

	ܽݐܽܦ	݀݁ݐ݈ܽݑ݉݅ܵ ⟹ .ሺ݁	݊݋݅ݐܽ݉݅ݐݏܧ	݈݁݀݋ܯ	ܽݐ݁ܯ ݃. ሻܦܨ
⟹  ௦݌	݈݁݀݋݉	ܽݐ݁݉	݂݋	ݏݎ݁ݐ݁݉ܽݎܽ݌

	ܽݐܽܦ	݈ܽ݅ܿݎ݋ݐݏ݅ܪ ⟹ .ሺ݁	݊݋݅ݐܽ݉݅ݐݏܧ	݈݁݀݋ܯ	ܽݐ݁ܯ ݃. ሻܦܨ
⟹  ଴݌	݈݁݀݋݉	ܽݐ݁݉	݂݋	ݏݎ݁ݐ݁݉ܽݎܽ݌

ݕݐ݈ܴ݅ܽ݁	݋ݐ	݈݁݀݋ܯ	݂݋	ݏݏ݁݊݁ݏ݋݈ܥ	݂݋	݁݁݁ݎ݃݁ܦ
∶ ܨ െ  		଴݌	݀݊ܽ		௦݌	݂݋	ݕݐ݈݅ܽݑݍ݁	ݎ݋݂	ݏܿ݅ݐݏ݅ݐܽݐݏ	ݐݏ݁ݐ

 
4.1 Choosing a Form of Fundamental Diagram to Use  
 



David Shteinman   Two Methods to Improve The Quality and Reliability of  
Calibrating & Validating Simulation Models 

 
 

 

   15 | P a g e  
AITPM 2014 National Conference 
 

The simplest type of FD in steady state for uninterrupted traffic flow on a motorway is the 
flow-density FD. From the relationship 
  

Flow = density * space mean speed 
 

The flow-density FD can be represented as a speed-density or flow-speed FD in a 
straightforward way.  Historically, the concept of FD was proposed from experimental 
observations by US traffic engineer Bruce Greenshields in 1933, who postulated a linear 
relationship between speed and traffic density. However it has long been observed that a 
linear specification often describes the data poorly. For example, quite often the FD has a 
crucial point at which the traffic changes from free-flow to congested condition and 
correspondingly the functional relationship changes.  Various other functional relationships 
between the speed  ܸ and density ݇ have been proposed to account for the observable data 
features (see Table 2 below for summary). Figure 7 shows the empirical performance of some 
of the models in Table 1 using a data for a route in Atlanta, Georgia. The original model of 
Greenshields clearly doesn’t fit the data very well. More complex models with higher number 
of parameters are a better fit.  
 
 

Model  Functional Relationship Parameters 

Greenshields (1935)  ܸ ൌ ௙൫1ݒ െ ݇/ ௝݇൯  ,݂ݒ ݆݇ 
Greenberg (1959)  ܸ ൌ /൫݇݃݋௠݈ݒ ௝݇൯  ,݉ݒ ݆݇ 
Underwood (1961)  ܸ ൌ /൫െ݇݌ݔ௙݁ݒ ௝݇൯  ,݂ݒ ݆݇ 
Northwestern (1967)  ܸ ൌ ݌ݔ௙݁ݒ ൬െ

1
2
ሺ݇/݇଴ሻଶ൰  ,݂ݒ ݇0 

Drew (1968) 
ܸ ൌ ௙ݒ ቆ1 െ ൫݇/ ௝݇൯

௡ା
ଵ
ଶቇ 

 
,݂ݒ ݆݇ 

Pipes‐Munjal (1967)  ܸ ൌ ௙൫1ݒ െ ൫݇/ ௝݇൯
௡
൯  ,݂ݒ ݆݇ 

Newell (1961)     

ܸ ൌ ௙ݒ ቌ1 െ ݌ݔ݁ ൭െ
ߣ
௙ݒ
ቆ
1
݇
െ
1

௝݇
ቇ൱ቍ 

 
,݂ݒ ݆݇,  ߣ

Modified Greenshields   ܸ ൌ ଴ݒ ൅ ൫ݒ௙ െ ଴൯൫1ݒ െ ൫݇/ ௝݇൯
ఈ
൯  ,0ݒ ,݂ݒ ݆݇ 

Van Aerde (1995)   ݇ ൌ 1/ቆܿଵ ൅
ܿଶ

൫ݒ௙ െ ൯ݒ
൅ ܿଷݒቇ  ܿଵ, ܿଶ, ܿଷ,  ௙ݒ

MacNicholas (2008) 
ܸ ൌ ௙ݒ ቆ

௝݇
௡ െ ݇௡

௝݇
௡ െ ݉݇௡

ቇ 
,݂ݒ ݆݇,݉, ݊ 

 
Table 2 Single-regime Speed-Density FD Models Credit: Wang et al. [2010] 
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Figure 7:  Empirical Fit of Single Equation Models for the Fundamental Diagram 

(Credit: Wang et al. (2010) 
 
 
Toledo suggests using the Pipes-Munjal FD model (see Munjal and Pipes (1971) for detailed 
discussion). However our review of the literature showed that the FD  model of Wang et al. 
[2010] proposes a flexible  specification for the speed-density fundamental diagram. It has 
major advantages over other existing models: 

1) It can fit the data with reasonable accuracy although it is a single regime model. 
2) The curve that produces has desirable mathematical properties (e.g. it is smooth 

and bounded – doesn’t go to infinity or zero).  
3) The parameters of the model   have a clear interpretation.  

The equation for the speed-density relationship is: 
(2.1) ܸ ൌ ௕ݒ ൅

௩೑ି௩್

ቆଵା௘௫௣ቀ
ೖషೖ೟
ഇభ

ቁቇ
ഇమ

 

 
 
The parameter ݒ௙ is free flow speed and  ݒ௕ is the average travel speed at stop and go 
condition.	ߠଵ is a scale parameter which describes how the curve is stretched out over the 
whole density range,	ߠଶ is a parameter which controls the lopsidedness of the curve. The 
parameter ݇௧ is the turning point that the speed-density curve makes the transition from free-
flow to congested flow.  

4.1 Using the Fundamental Diagram in Model Validation 

Toledo gives an illustration of the approach by using it to validate a micro-simulation mode of 
a section of the M27 motorway in Southampton, UK. The observational data includes traffic 
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counts and speeds for 5 days at 1 minute intervals using loop detectors on a 4.3 km length of 
the motorway. The micro-simulation outputs are the same measures (counts and speeds) from 
10 runs. 
 
For our purposes we will summarize the main results and expand on what is relevant for 
further implementation of the approach: The standard goodness of fit tests were used on the 
speed outputs of observed vs. simulated showed good overall fits. However, as stated above, a 
positive Goodness of Fit result does not indicate how well the simulation is replicating the 
dynamics of traffic flows in the network being modelled. 
 
For implementing the following 3 –step process is recommended: 
 
Step 1: Decide which meta-model to use for validation.  
 
TK  used the Fundamental Diagram with  Pipes-Munjal specification for the speed-density:  
 

ܸ ൌ ݂ݒ ቆ1 െ ቆ
݇
݇௧
ቇ
݊

ቇ 

 
where ݂ݒ is the free-flow speed and ݇௧ is the critical density, ݊ is an exponent parameter.  
 
For improved representation of traffic dynamics we recommend a three-regime FD model 
such as the Wang-Li (2010) FD model described above. 
 
 
Step 2: Estimate the meta-model for simulated and observed data, and plot the graphical 
representation of both meta-models outputs, if possible.  
 
Simple visual inspection of the meta-models is always advisable before proceeding with more 
complicated statistical techniques.   
 
In the current case, the parameters of the meta-models are given by the parameter vector  
ߚ ൌ ൫ݒ௙, ,ݐ݇ ݊൯. The value of the vectors is chosen on the basis of minimizing the sum of 
squared differences between the meta-model outputs for the speed ଵܸ෡ , … , ௡ܸ෡  and the values of 
the speed which are used for the meta-model calibration ଵܸ, … , ௡ܸ: 
 

൫ ଵܸ෡ െ ଵܸ൯
ଶ
൅ ⋯൅ ൫ ௡ܸ෡ െ ௡ܸ൯

ଶ
. 

 

Efficient algorithms for solving this type of problems (non-linear least squares) such as 
Levenberg-Marquart method exist (Press et al. [2007])  

 
The Fundamental Diagrams for the observed and simulated data are shown below.   
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Figure 8: Observed and simulated speed–density FD Meta –models 
Credit: Toledo [2004, p.148] 

 
 
 
Visually, the two curves are very similar to each other. Formal statistical test (the step below) 
reveals however that we can reject the hypothesis that the parameters which determine the 
shape of the two curves are identical.  Thus, a visual inspection of the regression curves and 
data points (as in Fig. 8 above) is not sufficient  
 
 
Step 3: Test of the closeness between the meta-model for the observed and simulated data.  
 
A formal statistical test can be devised to test if the parameters of the meta-models on the 
basis of the simulated and observed data are identical. It is based on the F-test which is a 
standard statistical tool. We will briefly describe its application in the current context. For 
more in depth explanations and discussions the reader is referred to any standard statistical 
text e.g. Lomax (2007).  
 
The F-test is performed by estimating two general meta-models: both of them use the 
combined simulated and actual data. The first meta-model have separate coefficients for the 
simulated and actual data (unrestricted meta-model) and the second meta-model forces 
equality of these two coefficients sets (restricted model).  
 
The F-test is based on comparing how well the unrestricted model fits the data in comparison 
to the restricted model. If the benefit of not restricting the coefficients is only marginal, we 
can conclude that the meta-models for the simulated and observed data are not statistically 
different.  
 
The goodness of fit of the two models is measured by the sum of the squared residuals: ܴܵܵ௎ 
and ܴܵܵோ– sum of the squared residuals for the unrestricted and restricted models, 
respectively.  
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Since the unrestricted model has twice the number of coefficients than the restricted one it 
will always provide a better fit e.g. ܴܵܵ௎ ൒ ܴܵܵோ. The idea is to adjust the difference in 
goodness of fit for the fact that the unrestricted model has more degree of freedom. 
 
It can be shown that under certain general conditions, the ratio  
 

ܨ ൌ
ሺܴܵܵோ െ ܴܵܵ௎ሻ/ܭ

ܴܵܵ௎/ሺܰ௢ ൅ ܰ௦ െ ሻܭ2
 

  
has F-distribution with parameters ܨ௄,ே೚ାேೞିଶ௄ . Here ܰ௢ and ܰ௦ are the number of data 
points in the observed and simulated data, respectively and ܭ is the number of parameters 
(three in the current case).  
 
Comparing the value of the test statistics ܨ to a distribution table for ܨ௄,ே೚ାேೞିଶ௄ allows us to 
test the (null) hypothesis of equality of coefficients of the meta-models for the observed and 
simulated data. In the example, above the (null) hypothesis that both coefficient sets are 
identical can be rejected.  
 
Thus, the calibrated model in the TK example doesn’t pass the calibration step. This step 
could be performed in similar fashion to other (traffic) meta-models.  
 
 

5. Conclusion  

In this paper we have attempted to offer practical solutions to two fundamental problems 
arising in the calibration and validation of traffic simulations: namely the problems of 
Calibrating a model to base data this is itself highly variable which leads to a high degree of 
uncertainty in how representative it is of the system being modelled; and uncertainty in how 
well the model represents the underlying structure of the traffic dynamics in reality (the 
validation process). 
 
Our proposed solution to the calibration problem is to first offer the easy to use tools of EDA 
to help modellers be aware of the features of the variability of base data traffic counts and 
travel times. This is achieved by graphing the observed data, and taking into account the 
shape of the distribution and effect of outliers. 
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