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Lunar X prize teams are competing to be the first non-governmental spacecraft 

to soft land on the Moon. All the teams have small budgets that are severe 

restrictions for mission designers. Hence it is necessary to rely heavily on 

historical data analysis and simulation to characterize and quantify expected 

performance of mission components. Statistical methods such as Exploratory 

Data Analysis (EDA), Time Series Analysis and Design & Analysis of Computer 

Experiments (DACE) are ideally suited to the task of delivering maximum 

information on the operating windows of expected performance at minimum cost. 

A case study is presented from a Lunar X team (SpaceIL) using statistical 

methods to characterize the expected performance of the Universal Space 

Network (USN) tracking stations to be used in the mission, using residuals data 

from the NASA Lunar Reconnaissance Orbiter mission (LRO). A moving 

window Time Series method was used to model the occurrence and duration of 

jumps in residuals.  A feature of our method is the ability to isolate transient 

signals (e.g. jumps) from the usual noise for improved characterization of 

tracking performance. The EDA process revealed features such as bimodal 

distribution of data at some stations, and periodic patterns in the autocorrelation 

between residual values by day and by pass. These actual tracking performance 

measures will be used as inputs to a simulation tool for performance analysis of 

SpaceIL’s orbit determination capabilities. To maximize the information from 

the minimum number of simulation runs we outline the use of statistical DACE 

– a method adapted from industrial experiments that is highly efficient at 

determining input/output functional relationships in complex multivariate 

systems.  The case study indicates a way forward for increased use of statistical 

tools and approaches in Mission Design and Analysis, by adapting methods from 

other disciplines such as econometrics and industrial experimentation,  

 

INTRODUCTION  

SpaceIL is an Israeli non-profit founded at the end of 2010, to participate in the Google Lunar 

XPrize (GLXP). The mission of the GLXP is to incentivize space entrepreneurs to create a new era 

of affordable access to the Moon and beyond. Created in 2007, the GLXP aims to both reinvigorate 

the public’s interest in the Moon by highlighting the technological achievements of the 

competition’s global teams, and to inspire the next generation of scientists, engineers, space 

explorers, and adventurers. The competition’s $30 million prize purse will be awarded to teams 

who are able to land a privately funded spacecraft on the Moon, travel 500 meters, and transmit 

back high definition video and images (Reference 1).  
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The small budget of Lunar X prize teams leads to severe restrictions for mission designers: For 

example, no team will have a dedicated communication network for the mission, and no test flights 

of a teams’ spacecraft will be undertaken.  Hence it is necessary to rely heavily on historical data 

analysis and simulation to characterize and quantify the expected performance of mission 

components. The low budget also places a limit on developing complex simulations that can include 

expected errors and uncertainties in inputs; and simultaneously deliver maximum information on the 

operating windows of expected performance. 

Statistical methods such as Time Series Analysis and Design & Analysis of Computer 

Experiments (DACE) are ideally suited to solve this dilemma by maximizing the information 

gained from existing data and simulations, at minimum cost. We present a case study from our 

work with a Lunar X prize team (SpaceIL of Israel) that illustrate this. 

The Mission Analysis (MA) Group at SpaceIL sought to increase reliability and accuracy of 

orbit determination and prediction capabilities by: 

1. Characterizing and quantifying the expected performance of the Universal Space Network 

(USN) tracking stations to be used in SpaceIL’s mission - using the residuals of the NASA 

LRO mission (chosen because of similarities in the missions) 
2. Using these results to develop a realistic Tracking Data simulation and generation tool for 

Performance Analysis of orbit determination and prediction capabilities  

 

The case study reported here is on the statistical and analytical aspects of these two objectives, 

implemented by the Industrial Sciences Group. The aim was to meet the engineering objective to 

provide information to SpaceIL to modify their orbit determination simulation to include realistic 

tracking station performance.  
 

MISSION OVERVIEW  & ORBIT DETERMINATION  

 
The Mission Analysis team at SpaceIL is responsible for designing and analysing the 

spacecraft’s trajectories and manoeuvres to best achieve the objectives of the mission, and to ensure 

the spacecraft reaches these objectives in operation.  The trajectory is designed, optimized, and 

visualized using System Tool Kit (STK) software developed by AGI.  The role of the Orbit 

Determination sub-system is to estimate (to within specified requirements) the spacecraft’s 

translational states (position and velocity) relative to a specified reference frame as a function of 

time. This process is conducted using Orbit Determination Tool Kit (ODTK) software developed 

by AGI. The accuracy of the spacecraft’s estimated ephemeris is a function of the performance of 

the tracking sensors (tracking network and spacecraft transponder), as well as the accuracy of the 

force modelling, and estimation process. 

Mission Overview 

The launch is planned for late 2017 as a secondary payload on a SpaceX Falcon 9 launcher. The 

trajectory can be understood as a set of joined trajectory segments beginning with Earth orbiting 

In-Orbit Testing (IOT)/Initial Orbit Determination (IOD) and Phasing. The spacecraft then 

transitions to the lunar transfer phase through cis-lunar space and enters a set of circularization 

orbits at the Moon. Finally, the spacecraft descends from a parking orbit into the Handover Orbit 

from which the braking and landing will be conducted. For further details on the mission trajectory 

design including use of phasing loops, phasing duration, Lunar transfer and lunar orbit insertion, 

and how the OD team gained experience with manipulating real tracking data and honing 

estimation procedures, see Reference 1.  
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CHARACTERIZ ING TRACKING STATION PE RFORMANCE  USING TIME SERIES 

ANALYSIS  

Radio frequency measurement types will be used exclusively for Orbit Determination (OD) in 

SpaceIL’s mission. The measurements types include: Doppler, range, azimuth, and elevation. A 

commercial system that can provide such data is the Universal Space Network (USN), a subsidiary 

of SSC Space US, Inc. 

 

 

Figure 1. USN network showing ground stations to be used by SpaceIL: Dongara (Australia), South 

Point (Hawaii, US), Kiruna/Esrange (Sweden), Weilheim (Germany). 

The team’s limited budgets mean no test flights of the mission are possible. Hence it is crucial 

that SpaceIL’s OD team validate the critical aspects of its mission design. To that end, SpaceIL has 

made use of publicly available data. NASA’s Flight Dynamics Facility (FDF), the team responsible 

for tracking data handling and trajectory estimation at NASA Goddard, has published the tracking 

and ephemeris data for the lunar orbiting stages of the Lunar Reconnaissance Orbiter’s (LRO) 

mission.  

In the case study described here, to make use of the LRO data, we applied Time Series analyses 

methods and developed a framework that enabled SpaceIL to achieve these two objectives: 

1. Quantify USN tracking performances  

2. Generate tracking statistics for future use in simulating tracking data for the SpaceIL mission  

 

The USN has been used, and validated, on recent lunar and/or phasing missions; IBEX, LADEE, 

ARTEMIS, and LRO. Historical tracking data from the LRO mission has been made publicly 

available which allowed the SpaceIL team to analyze its statistical behavior and apply the lessons 

learnt to the SpaceIL mission. Four USN ground stations location were used by LRO during its 

nominal and science mission which hope to be used by SpaceIL: Dongara (Australia), South Point 

(Hawaii, US), Kiruna (Sweden), Weilheim (Germany)- see Figure 1 above.  Previously, USN and 

the tracking data handling teams of LRO have reported the overall accuracy for the USN network, 

reported in (Reference 3).  
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Case Study Outline 

The object of the study presented here was to characterize actual performance of each USN 

station to be used in the mission by using two years of moon orbiting LRO data.  Performance was 

based on several metrics determined at the outset of the study jointly by ISG and SpaceIL’s OD 

team with a focus on specific transient events of interest (see below). The statistical properties were 

based on the residuals in Doppler and Range values from the data of the four USN stations:  

Dongara, Kiruna, South Point and Weilheim.  

Residuals are defined in the standard manner as the difference between an actual observation 

and what the observation would have been if the satellite travelled exactly along the nominal orbit 

(Reference 2). In our case, residuals were generated from the LRO tracking data from the USN, 

then comparing them to NASA’s estimated ephemeris solutions.  

In addition to the basic statistical measures of mean, standard deviation and incidence of 

outliers—our focus was on characterizing a tracking station by other metrics and specific types of 

transient events of interest. This included shape of distribution of residual values, occurrence and 

classification of sudden jumps in residual value, duration after a jump till residuals return to the 

normal state, autocorrelation and periodic patterns in residual data. The statistical features of these 

metrics for each station will be taken as a reasonable representation of expected performance of 

those stations during the SpaceIL mission. The results of this study will be used to modify the 

inputs to the OD simulation. A full characterization needs to include transient events as they are 

not contained in aggregated measures such as mean and standard deviation. Furthermore, the 

occurrence of an unexpected transient event (E.g.  jump, outlier or bad pass) can have a significant 

effect on the OD process if they are not understood as a transient event.  

Our work can be seen as a sequel (in part) to the work by (Reference 3) on Tracking Data 

Certification for the LRO mission done prior to LROs launch. In statistical terms, that work focused 

on validating that the variability of USN station measurements for Range and Doppler was within 

LRO requirements for Range of 1 standard deviation < 10m, and for Doppler 1 sigma < 3mm/sec. 

In that study, a sample of five consecutive successful passes was used from each of the four USN 

tracking stations. From the sample, the only metrics used were Mean and Standard deviation of 

residual values. Metrics for range tracking was obtained from Landsdat-5 data; for Doppler, data 

was obtained from the THEMIS satellite.  

In our study, we used 1394 number of passes from 590 days of LRO moon orbiting data for 

each of the four USN stations in the period 24 October 2009 to 08 August 2011. We note that while 

our study specifically analyzed LRO data from four tracking stations, we used generic tools and an 

approach that can be applied to a wide range of astrodynamics applications where it is required to 

characterize a complex system by a rage of metrics beyond aggregate metrics of mean and variance.  

The plan of this paper is to give the main results with an emphasis on the tracking network 

features, patterns and insights that were gained by using Time Series analysis and other statistical 

methods.  The main results will illustrate the kind of data features most useful in characterization 

of a tracking network for simulation purposes, and how to detect those features. 

Exploratory Data Analysis 

Exploratory Data Analysis (EDA) of residuals was performed on the metrics of distributions of 

the residuals data, outliers, variance in white noise, jumps and consecutive “bad” passes. The EDA 

covered a wide range of statistical measures over the sample of 590 days.  For brevity, we display 

only the main salient results of the EDA  
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 Outliers 

The first task before more involved data analysis was to identify clearly anomalous observations 

(possibly data entry errors) from “legitimate” observations that are model predictions with a high 

error. Plotting all the data for each station revealed the presence of extremely large outlier data 

points which would distort any subsequent analysis if not removed. 

After obviously anomalous data are removed, a criterion for defining an outlier is required that 

should not be arbitrary but instead based on the variability in the data itself. Outlier data should not 

be automatically discarded but retained for further study, as the cause of an outlier may be 

identified, and contain useful information. For a valid determination of what is /is not an outlier-in 

the absence of a threshold motivated by physical/operational considerations- we used the Inter-

Quartile Range formula. The formula gives upper and lower limits and data beyond these limits are 

classified as Outliers: 

Lower limit = Q1- 1.5 (Q3 - Q1) 

Upper limit = Q3 + 1.5 (Q3 - Q1) 

Where 

Q1 = 1st quartile of data  

Q3 = 3rd quartile of data  

 

Outlier results for all stations are summarized in Table A1 (Appendix 1). 

 

Bi-Modal Distributions  

The stations Dongara, Kiruna and Weilheim exhibited bimodality in their Range residual 

distributions over the entire observation period. On closer examination of the time series, we 

identified clear cut-offs in time at which the residuals abruptly jumped to a new distribution. We 

separated the dataset by those time cut-offs, as shown below. For subsequent analyses, these modes 

are treated as separate datasets. Hence a station with bimodal behaviour are split and analysed as 

two separates ‘Stations’.  In terms of nomenclature, the first mode of Dongara will be subsequently 

referred to as Dongara, Mode 1 etc. 

The bimodality was detected by observing a large and maintained shift in the Mean residual 

values (see Figures 2a, 2b below for an example). Dongara showed a significant shift in Mean on 

January 4, 2011 from -7.41 m to -2.71 m; Kiruna’s shift in Mean occurred on October 11, 2010 

from 9.53 m to -3.86 m and Weilheim’s occurred on April 1, 2011from -1.99 m to -51.3 m. 

 

 
Figure 2a. Dongara Station Range Residuals Time series  
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Figure 2b. Dongara Station Range Residuals- Histogram of the Mean Residuals per 

Day 

 

Autocorrelation between Data 

Autocorrelation measures the correlation between observations at different distances, or times 

apart. The value of the auto correlation coefficient is between [-1,1] and measures the strength of 

the linear association between two variables. In the case of LRO data on Range and Doppler 

residuals, the autocorrelation is the strength of the association between one day (and pass) to the 

next day or pass i.e. between successive observations which is an autocorrelation coefficient at Lag 

1. Auto correlation at Lag 2 would be the strength of the correlation between the last two days (or 

passes) and the current day (or pass). 

All stations were investigated for Autocorrelation by day and by pass, and for periodic patterns 

in the “lag effect” when significant autocorrelation was present.  We found a large variation in 

autocorrelation results between stations and significant periodic patterns in Range residuals but not 

in Doppler residuals. Each stations’ results were tested for autocorrelation between day and pass 

for measures of Mean, standard deviation and range (max-minimum value). Sample results are 

shown below. For example, Dongara Station showed first order autocorrelation coefficients of 

Mean: 0.93; Standard Deviation (SD): 0.76; Range: 0.41  

 
Figure 3. Correlogram showing Autocorrelation in the Dongara Mean Residuals per Day (20-

day lag). Horizontal line represents 5% significance level) 
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Figure 4. Autocorrelation in the SD of Residuals per Day (20-day lag) 

 
We note the autocorrelation in mean is very high and decays slowly with lag and there is 

a clear periodic pattern in the autocorrelation in standard deviation which peaks at lag 1 (initially) 

and peaks at about lag 13 again. The cyclic behavior seems to be preserved even if we compute the 

autocorrelation at higher lags (40). See Figure 5 below.  

 

 
Figure 5. Autocorrelation in the SD of Residuals per Day (40-day lag) 

 
We fitted a First-order autoregressive process, AR (1), (see Reference 4) to the Mean Residuals 

and consider the autocorrelation of the errors. We observed the same (full) cycle of length at about 

13 lags. From the graph below (Figure 6) the autocorrelation is significant and negative at lags 6 

and 7 and then significant and positive at lags 13 and 14, then significant and negative at lag 18, 

the positive and significant at lags 26,27 and 30, negative and significant at lag 34 and positive and 

significant at lag 39. The same held true for the AR (1) process applied to the standard deviation 

and range. 
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Figure 6. Autocorrelation in the Errors of an AR (1) process for the Mean Residuals per Day (20-day 

lag) 

 
The above simple analysis suggests that a simple time series model with one autoregressive 

term (AR (1)) plus Fourier seasonal terms with cycle length approximately 13 will describe the 

dynamics of the three variables sufficiently well.  

 
By contrast the tracking station at South Point (Hawaii) showed different characteristics.  It 

showed first order autocorrelation coefficients of Mean: 0.66, SD: 0.40 Range: 0.27. The 

autocorrelation in mean decreases much faster in comparison to Dongara. There were no periodic 

patterns noted in the daily residual data.  (Results on all other stations are presented in Tables A1 

and A2 in the Appendix). 

 
 

Figure 7. Correlogram showing Autocorrelation in South Point Mean Residuals per Day (20-

day lag). Horizontal lines represent 5% significance level 

 

Jumps 

We examine the median residuals of different passes (‘pass residuals’ for brevity) and analyzed 

them for jumps depending on their magnitude. Very large and rare jumps that are sustained (more 

than 10 minutes in duration), >1000 m for Range and >1000cm/sec for Doppler, tended to occur 

as isolated events and were able to be analyzed visually. Smaller jumps that occur more frequently 

were identified and statistically analyzed. 

1 6 12 17 23 28 34 40

0

 
Sample Autocorrelations

 

Lag Length

1 7 13 20

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 
Sample Autocorrelations

 

Lag Length



 

9 

When finding the ‘average’ of the residuals in each unique pass, we use the median, not the 

mean. The median is more robust against the small number of outlier residuals within each unique 

pass. 

For residual pass jumps that are smaller in magnitude, identifying them using a single residual 

magnitude bound is more challenging, in that 

1. Both Range and Doppler pass residuals have an oscillatory trend with a 2-week period. It 

is thought to be more useful to assess for jumps based on a pass residual’s distance from 

this overall trend rather than from the zero line.  

2. Historical data suggest the spread of both Range and Doppler changes with time. it is 

thought to be more useful to assess for jumps relative to the spread of the residual around 

that time, rather than trying to establish a single threshold applicable for all time. 

We therefore use a moving window approach to deal with these two challenges. For all passes, 

a ‘window’ of determined width is extended symmetrically forward and backward in time. We 

obtain the median, the standard deviation (SD) and the median absolute deviation (MAD) of all 

pass residuals within this window, and assess how far the pass residual at the centre of the window 

‘strays from the group’, in terms of number of SD or MAD above/below the median. The process 

is repeated for all data points, assessed with respect to their own centered window (hence ‘moving’ 

window). A moving window approach allows residuals to be assessed for jumps relative to the 

overall trend and variability around that point in time. 

Figure 8 below is a visual illustration of the jump criterion, using a window width of 4 passes 

before & after, and a jump bound of 2 SDs. When the data point is outside the defined jump 

bound, it is classified as a jump. 

 

 
 

Figure 8. Moving window jump criterion showing two parameters: (a) the window 

width and (b) the size of the bound beyond which a pass residual is deemed a ñjumpò 

 

Jump Identification Using Moving Pass Window 

A window is defined by the number of pass residuals before and after the centre pass residual. 

In Figures 9 and 10 below, we use results from Dongara Station as an example to demonstrate the 

jump classification so that a suitable parameter set can be identified. A good choice of parameters 

allows this jump criterion to sensibly assess each pass for jump relative to its contemporary passes, 
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and select jumps that the OD team considered to be of interest. Although SDs are the mostly 

commonly used measure of spread, we choose to quantify the deviation from the centre of the data 

using median absolute deviation (MAD) in place of SD.  

For a sample of data, the MAD is obtained by: 

1. Calculating the median of the data 

2. Calculating the absolute distance between each data point to this median, for all data points 

3. Take the median of all these distances. 

This is in contrast to SD, which finds the squares of the distances of each data point from the 

sample mean, then take a mean of these squared distances. MAD is more robust to outliers and 

should perform better as a threshold to classify jumps.  

We tested the following parameter set of values: 

(a) Windows width: 20 before & after, 10 before & after, 4 before & after 

(b) Jump threshold, in terms of number of MAD threshold away from the median: 3, 10 and 

20 (as MAD is a tighter measure of spread than SD and are usually much smaller when 

jumps are present). Viewing plots of the data showed that a MAD threshold of 10 is already 

quite a loose bound. 

After numerous tests of different windows widths and jump thresholds, we recommend a 

window width of 10 before & after and the number of MAD threshold from 3-10. The larger 

window width allows MAD to form a smoother jump bound, while a threshold below 10 keeps the 

bound tight.  The results of the tests of different jump parameters were provided to the SpaceIL 

OD team for review and to allow them to make an informed choice of bound parameters, after 

which the jumps can be identified. 

Figures 9 and 10 are examples of capturing jumps in Range residual value (by pass) with a 

moving window width of 20 or 10 passes, and threshold set at MAD of 3. 

 

 
Figure 9. Window width of 20 passes and a MAD threshold of 3 captured 39 jumps  
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Figure 10. Window width of 10 passes and a MAD threshold of 3 captured 54 jumps. 

 

Jump Identification Using Moving Time Window 

SpaceIL recommended performing jump classification using a moving time window (rather than 

a pass window), as it accounts for time gaps between each pass residual. Furthermore, as there is 

an oscillatory trend in the pass residuals, SpaceIL is interested in bounds that can follow the trend 

tightly but do not misidentify the crests and troughs of the trend as jumps. We tuned the parameters 

to obtain a bound suitable for this goal. 

As there is an oscillation of approximately 2 weeks in period in the residuals it was found a moving 

window width as large as 12 hours (forward & back) still classifies jumps effectively without 

trimming the crests and troughs of the oscillations, and thereby capturing only sudden jumps. As 

with jump classification using a moving pass window, assessing jump magnitude using number of 

median absolute deviation (MAD) from the running median is superior in robustness compared to 

using SD. In the case of sparse pass residual data, we found that symmetrically increasing the width 

of the moving window to include at least 5 pass residuals is necessary and sufficient to ensure 

sensible jump identification.  Jump identification for Range and Doppler residuals used a moving 

time window of 6 hours forward and back from the time of the pass residual (a window is expanded 

if necessary to contain a minimum of 5 passes residuals). The jump bound was set to be 3 MAD 

above/below the median of all pass residuals within the moving window (the moving or “running 

median”).  

 

Moving Window Width  

The computation of the running median and the MAD jump threshold depends on the moving 

window width. Selecting a suitable window width is important in preserving non-jump overall 

trends that have a shorter time scale. If the width is too wide, the running median is unable to 

respond to trends happening in shorter time scale, and the jump bound would then trim the crests 

and troughs of the trends while missing jumps hiding between crests and between troughs. If the 

width is too narrow, the running median will read into time scales that are too fine and will consider 

large jumps as part of the overall trend, resulting in missing identification of large jumps. 
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We experimented with varying window widths to identify an optimal result. There is an 

apparent oscillatory trend with a period of about 2 weeks for Doppler and Range pass residuals. 

The result suggests that a window width of 6 to 12 hours is a reasonable choice, having no issue of 

accounting for the oscillatory trend (see Figure 11).  We found Window widths of 24 to 72 hours 

show gradual trend deterioration, within 96+ hours, were unable to pick up the oscillatory trend 

and failed to identify jumps that are between crests and between troughs. 

 

 

 
 

Figure 11: Effect of Moving Window Width on Median Doppler Residual Time Series (Trend 

Removed); MAD= 3, Dongara Station 

From the above two window widths, the top subpanels show that the pass residuals with its ~2 

weeks oscillatory period (The oscillatory trend exists throughout the 2-year data. However, only 1 

month of data is shown for clarity of individual periods).  The running median (green line) is shown 

to capture the period quite well. This is further supported by the middle subpanel, which re-present 

the pass residuals with the running median subtracted. We see that the residuals are now centered 

at zero with no discernible oscillatory trend, which means our running median has accounted for 

the trend in the original pass residuals, and the jump bound is able to quantify jumps relative to this 

trend. 
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Jump Threshold 

As described above for Moving windows by pass, we use the Median Absolute Deviation 

(MAD) as a jump threshold instead of the more common standard deviation (SD), as it is a robust 

jump threshold in the presence of several large jumps. we use 3 MAD above and below the running 

median as the jump threshold. We consider 3 MAD as a sensible bound size that can sufficiently 

discern jumps from overall trends. For comparison, jump bounds using different numbers of MAD 

are presented below. 

. 

 
 

  

 

Figure 12. Median Doppler Residual Moving Time Window Time Series, 

        6 hr. forward & back (min. 5 passes), showing effect of different bound size 

            ranging from 2 to 4 MAD.  
 

We do note that the choice of parameters for the identifying a jump does rely (in part) on expert 

opinion and visual interpretation of Time Series graphs with a moving window. As an alternative, 

non-parametric methods such as wavelets can be used to detect jumps which does not require 

parameter tuning.  
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Jump Analysis 

All Station pass residuals were filtered for jumps, using the symmetric window width of 6 hours 

and minimum of 5 passes. The jump bound was set to be 3 MAD above/below the running median. 

Thus, the identified residuals can be interpreted as cases of a jump that exceeds 3 MAD of the 

median, relative to passes within a 12-hr window (centered on the jump itself) or relative to the 

neighboring 5 passes (including the jump itself), whichever spans a larger timespan. 

 

For each station, the distribution of the jumps relative to the running median (above or below) were 

determined for use as an input to a simulation of OD processes that requires realistic tracking 

station performance (see Figure 13 below). We note that regardless of stations or Range or Doppler, 

the distributions are centered at zero. It is worth noting that due to the fact that most jumps sizes 

fall in the “belly” of the empirical jump distribution, the tails of the jump distribution are thinner 

than that for the Normal distribution. Hence the Normal distribution cannot serve as a good 

approximation.   

 

 
Figure 13. Histogram showing distributions of Jump sizes for Range residuals at Dongara 

(Station 103.1) and South Point (Station 105) 

 

 

Time for  Jumps to Return to Normal 

80-90% of all jump occurrences for Range and Doppler residual for all stations resume to normal 

state immediately in the next immediate pass. 10-20% of all jump occurrences for Range and 

Doppler residual for all stations resume to normal state in 2 passes. 

Less than 2.6% of jump occurrences last for 3 passes or more. 
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FURTHER RESEARCH/OTHER APPLICA TIONS- DESIGN & ANALYSIS OF 

COMPUTER EXPERIMENTS TECHNIQUES (DACE)  
 

The results described above will be used as inputs to modify SpaceIL’s Orbit Determination 

(OD) simulation tool to include realistic tracking station performance. However, the OD simulation 

is very complex, with a large input and output space. There are eight input factors: Maneuver 

Perturbation, Solar Pressure Model Deviation, Transponder Model Deviation, Tropospheric Bias, 

Measurement Statistics for the ground stations, Measurement Time Bias, Tracking Schedule and 

Variation of Period in Certain Earth Orbiting Stages, and seven output metrics:  State Uncertainty 

and Cross-Correlations, Filter Residuals, Histogram of Measurements for each ground station, 

Tracker Measurement Bias, Maneuver Estimation and tests on Filter vs. Simulator. 

 Furthermore, each input and output has its own distribution parameters for errors and 

uncertainties, which represent the potential levels of each input factor. Simply testing the full range 

of 7 input factors at three levels (low, medium high) for one output metric only gives an input space 

= σ ςȟρψχ ÔÒÅÁÔÍÅÎÔ ÃÏÍÂÉÎÁÔÉÏÎÓ  to be tested, per output metric. With such a with a large 

input (and output) space, the simulation is very slow to run – a simulated complete mission can 

take two to four hours per run. Furthermore, the underlying input-output relationships are nonlinear 

with many variables interacting with one another. Hence it is difficult to study the behavior of OD 

performance and test a wide range of input values in simulation using traditional methods of 

varying one factor at a time and re-running the whole simulation each time. Also, by varying one 

factor at a time we are not certain to capture the full range of possible input values.   

Our proposed solution to reduce simulation run time, and test a wide range of values/worst case 

scenarios of inputs effecting OD Performance is to use the technique of Design & Analysis of 

Computer Experiments Techniques (DACE) - applied to the Orbit Determination simulation. 

The method of DACE (see Reference 5) has been used extensively in the automotive and other 

manufacturing sectors, but so far not in astrodynamics. DACE is used to augment the limited 

number of runs of the simulation by fitting an approximate statistical model, a Meta-Model, based 

on a set of limited observation data acquired by running the simulation at carefully selected design 

points (see “Space Filling” designs below). The Meta-model has an analytic form and is used to 

predict the simulation performance at unobserved input values. The approximate Meta-model is 

much simpler than the true one: it approximates the original model as closely as possible and is 

computationally cheap to compute. Then we use the meta-model for sensitivity analysis, 

optimization and prediction without needing to re-run the simulation. 

We propose a five-step process to adapt DACE to this task (this work is ongoing at SpaceIL) 

Step: 1 Factor Screening 

 As the OD simulation has a large number of input factors to be tested, it is necessary to start 

by using a “Screening Design” to assess the relative impact of a large number of input factors on 

the output (measures of OD performance). As pointed out in (Reference 6) it is useful to test each 

input factor at three levels, rather than two (low/high), as three levels allows for some assessment 

of curvature in the input/output relationship. Hence, we recommend the use of a Three Level 

Definitive Screening design (see Reference 6), to sample the initial runs of the OD simulation and 

screen out inactive factors.   

For Three-level screening designs, given m input factors, the number of runs required to do initial 

screening is 2m + 1. Hence for the SpaceIL OD simulation with m=7 input factors, only 15 runs 

are needed at the screening stage. 
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Step 2: Design the Simulation ñExperiment” 

As the OD simulator is very complex and slow to run the objective is to optimize the design for a 

limited number of runs and levels, yet still have a sufficient design to sample the range of input 

values. Monte Carlo (MC) sampling is commonly used to obtain a sample space in a computer 

simulation.  However as pointed out in (Reference 7) while MC sampling is simple to use, a set of 

MC samples will often leave large regions of the design space unexplored. This occurs due to the 

random and independent nature of the sample sites produced by a random number generator. 

To address this problem, we recommend the well-known and tested “Space Filling” design known 

as Latin Hypercube Sampling (LHS) as a way to generate efficient training data [“efficient” refers 

to a set of sample point that capture maximum information between the input-oupuit relationships 

– see Reference 5]. Given an equal number of samples, an LHS estimate of the mean will have less 

error than the mean value obtained by Monte Carlo sampling. In brief to illustrate how LHS 

sampling is performed, assume that there are only two input variables  ὢȟὢ and the values of ὢ 

vary on the x-axis below and the values of ὢ vary on the y-axis (see Figure 14 below).  LHS 

sampling begins by choosing a number of bins per factor (7 in this case).  

If we assume a uniform distribution for the two variables then the interval with possible values 

for ὢ is divided in 7 equally spaced intervals and the interval for the possible values of ὢ is 

divided into 7 equally spaced intervals. In case another probability distribution is chosen, the sub-

intervals lengths are chosen in a way such that the probability that the corresponding variable 

falls into any of the seven intervals is the same (1/7) 

 

 
Figure 14. Latin Hypercube Sampling showing seven bins in each of the parameters X1 and X2. The 

dots are sample sites randomly selected inside each bin.   

 

The partition of the intervals for values for the two variables into 7 pieces leads to a partition of 

the inputs space into 7 x 7=49 sub-rectangles or subspaces. The basic idea of LHS is to choose a 

small number among these sub-rectangles which are as uniformly distributed (representative of 

the input space) as possible. This is done by picking up one sub-rectangle per row in a way that 

there is one sub-rectangle per-column as in the figure above. A detailed description of the 

methods and advantages of LHS may be found in (References 5 and 7). 
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Step 3: Build a Meta-Model 

The objective of Step 3 is to construct an accurate, simple and easy to run model that 

approximates the true model of the OD simulation process. The Meta-model will have the form 

ὣᶻ ὫὢᶻȟȢȢȟὢᶻ  , for possibly a subset of the original variable set ὫὢȟȢȢȟὢ  e.g. Ὧ χ,  which 

approximates the original model as closely as possible and it is computationally cheap to compute.  

The Meta-model uses data generated by the sampling design of the simulating runs in Step 2 to 

describe the empirical relations between the screened inputs (from Step 1) and the outputs 

(measures of OD performance). There are a range of Meta-model types to choose from:  

Polynomial models, including Response Surfaces, Kriging models, Bayesian Interpolation and 

Radial Basis Functions.  

 

Step 4: Validating/Checking the Meta- Model 

This is done using cross-validation where the whole sample is divided into sub-samples 

and they are alternatively used for fitting/validation.  

 

Step 5: Using the Meta-Model for Sensitivity Analysis 

The aim of Sensitivity Analysis is to see how OD performance (as represented by the Meta- 

model) responds to variation in inputs. This includes the testing of worst case scenario of any inputs 

(as selected by SpaceIL) effecting OD performance. 

 
Figure 15. Schematic showing concept of a Meta Model and Space-Filling Design as 

used in Design & Analysis of Computer Experiments Techniques   

  

CONCLUSION 
This case study illustrates some benefits in using statistical approaches and techniques for 

Mission Analyses and simulation. Time series analysis was used to detect patterns that help 

characterize tracking station performance. Significant insights gained from the Time Series 

analysis included detecting sudden jumps in residuals, quantifying the periodic patterns in 

autocorrelation between residual values of Doppler and Range and detecting the existence of 

Bimodal Range residual behaviour. Applying the lessons learnt from this analysis can yield a two-

fold benefit for mission design and operations: 1) A general methodology is now available, 

validated on real tracking data, that can be used to derive realistic tracking station metrics for use 

in simulation of Orbit Determination processes; 2) The Time Series methods introduced here can 

also be applied during a mission to detect anomalous tracking data in real time.  For simulating OD 

performance, we have adapted the methods of DACE to significantly reduce the number of runs 

needed to model input-output relations and perform Sensitivity Analysis. Both methods used in our 

case study have been refined over many years use in other sectors (e.g. econometrics and 

manufacturing). Hence, they are readily available to be adapted for use by astrodynamics 

practitioners. 
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APPENDIX A SUMMARY OF RANGE RESIDUAL RESULTS   

 
Station Dongara 

Mode l  

Dongara 

Mode 2  

South 

Point 

 

Kiruna1 

Mode 1   

Kiruna1 

Mode 2 

 

Kiruna

2 

 

Wôheim 

Mode 1 

 

Wôheim 

Mode 2 

 

Basic Attributes 

Mean -7.41 -2.71 -1.85 9.53 -3.86 1.57 -1.99 -51.3 
SD 2.09 2.14 3.18 2.56 2.74 2.11 2.97 1.59 

Median -7.43 -2.77 -1.99 9.70 -4.09 1.35 -2.19 -51.3 
Outliers Attributes  

% 

anomalous 
0.88% 0.10% 0.20% 0.36% 0.00% 0.06% 1.03% 0.33% 

% IQR  1.36% 0.80% 0.58% 3.35% 5.07% 3.31% 1.00% 3.57% 
% total  2.24% 0.90% 0.78% 3.71% 5.07% 3.37% 2.03% 3.90% 

Jump occurrence 
No. of jumps 183 78 53 61 26 47 58 11 
% jumps 14.9% 12.9% 11.4% 12.1% 9.7% 14.0% 14.8% 12.5% 

Jump size relative to trend (magnitude < 1000 m) 

Mean -0.29 0.15 -0.74 -0.97 0.19 0.40 -3.01 -1.55 
SD 1.82 1.31 2.67 1.72 1.82 2.47 12.99 2.36 

Median -0.64 0.49 -1.35 -1.18 0.82 0.27 -1.39 -0.88 
Min  -4.83 -3.89 -5.57 -6.65 -3.75 -4.86 -96.86 -4.64 
Max 8.55 2.56 6.99 2.06 2.88 7.94 5.05 1.80 

Jump duration (in no. of passes) 

1 87.0% 81.7% 87.0% 85.7% 94.8% 91.7% 85.4% 86.3% 
2 12.4% 13.3% 10.9% 14.3% 5.2% 8.3% 14.6% 13.7% 

3+ 1% 5% 2% 0% 0% 0% 0% 0% 
Jumps occurrence correlation & lag4 

Lag 1      -5    11.9%       -        -       -        -          -          -    
Lag 2 -8.5%       -          -    8.6%    -        -          -          -    
Lag 3      -          -          -        -       -        -          -    28.1% 
Lag 4 6.9%       -          -        -       -        -          -          -    
Lag 5 6.2%       -          -        -       -        -          -          -    

Bad passes 

% bad pass 1.0% 0.2% 0.4% 2.9% 4.1% 5.4% 2.4% 2.5% 

 
Table A1: EDA on LRO Range Residuals over Two Years  

  

                                                           
4 Positive (negative) correlation at nth lag means that given a jump for the current pass, the nth next pass 
is more (less) likely to be a jump. Positive correlation at lag 1 indicates clustering, while lag n indicates 
periodicity of period n. 
5 Correlation not statistically significant. 
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APPENDIX B SUMMARY OF DOPPLER RESIDUAL RESULTS   

 
Station Dongara 

Mode l  

Dongara 

Mode 2  

South 

Point 

 

Kiruna1 

Mode 1   

Kiruna1 

Mode 2 

 

Kiruna2  

127 

Wôheim 

Mode 1 

 

Wôheim

Mode 2 

Basic Attributes 

Mean -0.078 -0.034 0.104 -0.020 -0.018 -0.195 -0.090 -0.059 
SD 0.201 0.162 0.193 0.178 0.175 0.178 0.162 0.131 

Median -0.074 -0.023 0.111 -0.021 -0.007 -0.178 -0.090 -0.044 
Outliers Attributes  

% 

anomal

ous 

6.00% 5.90% 4.80% 5.90% 3.60% 4.70% 0.80% 1.00% 

% IQRs 7.90% 5.60% 10.50% 5.20% 6.30% 5.20% 2.90% 2.70% 
% total  13.90% 11.50% 15.30% 11.10% 9.90% 9.90% 3.70% 3.70% 

Jump occurrence 
No. of 

jumps 
193 87 54 79 39 41 50 18 

% jumps 15.5% 14.1% 11.5% 15.3% 14.4% 11.8% 13.0% 20.2% 
Jump size relative to trend (magnitude < 1000 cm/s) 

Mean -0.11 -0.022 -0.69 -0.32 -0.35 0.48 0.29 0.025 
SD 1.17 0.088 5.01 1.10 1.19 1.14 1.98 0.079 

Median -0.042 -0.038 -0.006 0.013 -0.030 0.081 0.034 0.038 
Min  -16.18 -0.25 -36.80 -4.68 -5.04 -0.56 -0.35 -0.10 
Max 0.59 0.23 0.20 1.85 1.28 4.40 13.98 0.20 

Jump duration (in no. of passes) 

1 89.1% 89.6% 92.0% 100.0% 88.7% 78.1% 71.9% 86.0% 

2 10.9% 7.8% 8.0% 0.0% 11.3% 21.9% 28.1% 11.6% 

3+ 0.0% 2.6% 0.0% 0.0% 0.0% 0.0% 0.0% 2.3% 

Jumps occurrence correlation & lag 6 
Lag 1 -6.6% - - - - 11.8% - - 
Lag 2 - -8.4% -10.9% - - -10.3% - - 
Lag 3 -7.9% - -13.0% - - - - - 
Lag 4 6.2% 8.9% - - - -10.4% - - 
Lag 5 - - - - - - - - 

Higher lag n/a n/a n/a n/a n/a n/a (6)17.6% n/a 
Bad passes 

% bad 

pass 11.7% 10.5% 11.5% 10.2% 8.7% 8.4% 2.1% 2.7% 

  
Table A2: EDA on LRO Doppler Residuals over Two Years 

                                                           
6 Positive (negative) correlation at nth lag means that given a jump for the current pass, the nth next pass 
is more (less) likely to be a jump. Positive correlation at lag 1 indicates clustering, while lag n indicates 
periodicity of period n. 


