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INTRODUCTION 

Many numerical astrodynamics analyses are characterized by a large input space with disper-

sions on those inputs. They also require numerical integration to propagate orbital trajectories, as 

well as the spacecraft attitude and actuator states forward in time.  Often, Monte Carlo simulations 

are used, where each sample point is propagated numerically. These features all contribute to long 

Monte Carlo simulation times. Furthermore, the underlying input-output relationships are nonlinear 

with many variables interacting with one another. Hence, it is difficult to study the behavior in sim-

ulation of output responses as a function of the inputs - as that requires testing of a wide range of 

input values. Using traditional methods of varying one factor at a time and re-running the whole 

simulation each time is excessively time consuming. Also, varying one factor at a time means the 

end user of the simulation’s results cannot be certain they have captured the full range of possible 

input values.   

The aim of this paper is to adapt a method for astrodynamics simulations from industrial statistics 

and empirical  modeling, to achieve  the following outcomes: 1) Significantly reduce the run time of 

large-scale Monte Carlo simulations; 2) Ensure the simulation covers a wider range of val-

ues/worst case scenarios for significantly less runs than required under standard Monte-Carlo 

methods; 3) Increase the efficiency of Sensitivity Analysis and Optimization by using a 

fast/computationally cheap approximate model of the simulation, thus avoiding the need to re-

run the simulation to test the effect of alternate input values on the output.   

To achieve outcomes 1-3, we propose to adapt the techniques of Design & Analysis of Computer 

Experiments Techniques (DACE) to astrodynamics simulation and illustrate with two Case Studies. 

DESIGN & ANALYSIS OF COMPUTER EXPERIMENTS TECHNIQUES (DACE)  

DACE is an adaptation for simulations of the DOE approach (Design of Experiments) used in 

physical experiments on industrial processes. DOE is a statistical method of experimentation that 

varies all inputs in a simulation simultaneously (rather than one factor at a time) and achieves the 

following: 

• Determines the critical inputs (those with biggest effect on output of interest) 
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• Quantifies the input/output relationships in an analytical form within the experimental range 

• Shows interactions between inputs. 

 

The method of DACE (see Reference 1) has been used extensively in the automotive and other 

manufacturing sectors, but so far as we know, not in astrodynamics. DACE is used to augment the 

limited number of runs of a simulation by fitting an approximate statistical model, a surrogate or 

“Meta-Model”, based on a set of limited observation data acquired by running the simulation at 

carefully selected design points, generated from a “Space Filling” design. The Meta-model is easier 

and faster to run than the simulation and is used to predict the simulation performance at unob-

served input values. The approximate Meta-model is much simpler than the true one: it approxi-

mates the original model as closely as possible and is computationally cheap to compute. The Meta-

model is used for sensitivity analysis, optimization and prediction without needing to re-run the 

simulation. 

This paper investigates the application and applicability of DACE to two astrodynamics simula-

tions that use Monte Carlo runs: The first is an attitude control simulation using the Basilisk pro-

gram developed by the Autonomous Vehicle Simulation (AVS) Laboratory at University of Colora-

do at Boulder.* The second is a simulation of trajectory design for the Interstellar Boundary Explor-

er (IBEX) spacecraft. 

In both case studies, we use a five-step process to adapt DACE to astrodynamics simulations 

(see Reference 2): Step 1) Factor Screening; 2): Design the Simulation “Experiment” using a space 

-filling design 3) Build a Meta-model; 4) Validating/Checking the Meta-model; 5) Using the Meta-

model for Sensitivity Analysis. This process is demonstrated in Figure 1. 

                

Figure 1. Schematic showing concept of a Space-Filling Design and Meta-model as used in Design & 

Analysis of Computer Experiments Techniques 

 

The efficiency gain using DACE is highest when repeatedly running a large Monte-Carlo is a 

time-consuming process and unfeasible when large number of scenarios are to be tested. Also, 

DACE is highly effective in cases where it is required to quantify the effect of uncertainties and 

errors in inputs on some measure of performance. 

SAMPLING METHODS 

Monte Carlo (MC) sampling is commonly used to obtain a sample space in a computer simula-

tion.  However, as pointed out in Reference 3, while MC sampling is simple to use, a set of MC 

samples will often leave large regions of the design space unexplored. This occurs due to the ran-

dom and independent nature of the sample sites produced by a random number generator. 

                                                      

* http://hanspeterschaub/bskMain.html 
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To address this problem, in this paper a range of “Space Filling” designs are tested as a way to 

generate sampling schemes that capture the maximum information between the input-output rela-

tionships. The simulation and modeling performance is compared and contrasted using six sampling 

methods: 

1. Random Sampling - each input parameter is drawn randomly from the distribution. 

2. Hypercube - the 2n vertices of an n-dimensional hypercube. Hypercube sampling only samples 

from the vertices of the resulting n-dimensional hypercube and thus only considers data that are 

“rare”. Hence it only focuses on the extreme values/events and ignores the rest of the design space.  

Sampling from the vertices only can be very fast and minimize the experimental runs. However, if 

the underlying interest lies in the centre of the design space then sampling method such as hyper-

cube will produce samples of limited value.  

3. Latin Hypercube Sampling (LHS) - has the chief advantage of spreading its runs out over the 

entire design space. The other man features of LHS are described in detail by References 3-5. In 

brief:  Given an equal number of samples, an LHS estimate of the mean will have less error than the 

mean value obtained by Monte Carlo sampling. Also, LHS is superior to simply creating a grid over 

the entire design space as, due to the Sparsity of Effects principle, few of the many inputs in a mod-

el will prove to be statistically significant. When a computer model exemplifies effect sparsity, var-

iation in the response Y will be significant only when those few significant inputs are varied. If the 

significant inputs are kept constant and other inputs varied, the output Y will vary by a negligible 

amount (Reference 4, p. 14). LHS is a design that is space-filling in every dimension of the input 

space and, if collapsed in any one or more dimensions, would not result in duplicate test points. 

 

Other space filing design methods that will be assessed are: methods: 

4. Maximin and minimax statistics 

5. Uniform designs 

6. Orthogonal array-based methods. 

 

Figure 2 shows an example of sample points generated from these methods over a 2D input space. 

 
Figure 2. Comparison of Some General Types of Space-Filling Designs in 2-Dimesnional Space 

(References 3 and 4) 
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SURROGATE OR “META-MODELS” 

The objective is to construct an accurate, simple and easy to run model that approximates the 

true model of the simulation process.  

The initial runs of a sampling design are the “Screening” stage (Reference 6) where, due to the 

Principle of Sparsity of Effects, only a few variables   are identified as important for de-

termining the target variable  of interest. Each run of the simulation model for specific values 

 will generate a model value , where  is an unknown function.  

The Meta-model is determined by the following two steps: 

1. Sampling from a Space Filling Design: Generate a set of input values 

 which is representative of the whole input space and compute the 

corresponding values . 

 

2.  Model Development: On the basis of the computed pairs of function values and input values 

,  approximate the unknown function .  

For Step 2, three main types of Meta-modeling techniques were compared and contrasted:  

1. Parametric models E.G. Second-order Polynomials:  These models employ a polynomial ba-

sis where are non-negative integers. The number of polynomial basis func-

tions dramatically increases with the number of input variables and the degree of polynomial. 

(Reference 1, p.27). For our Meta-modeling purposes – we note an issue with Polynomials is that 

for modeling large and complex simulations there may be many local minimums/maximums 

within the design space. This requires a high-degree polynomial to approximate the true model 

(Reference 1, p.27). In such cases collinearity between inputs becomes a serious problem.   

  

2. Radial Basis Functions:  Radial basis function (RBF) methods are techniques for exact inter-

polation of data in multi-dimensional space (Reference 7 and Reference 1, p.177-179). The 

RBF maps the inputs to the outputs using a linear combination of the basis functions. We tested 

an RBF interpolation with cubic and thin plate basis functions.   

  

3. Non-parametric methods E.G Random Forests – have no formal distributional assumptions 

(hence a “non-parametric” regression), and automatically does screening/variable selection. 

This is very useful in astrodynamics simulations where there a large number of input variables 

and need to reduce the dimensionality to the critical inputs with most significant effect on the 

output response. Random forests can also handle highly non-linear interactions. 

 

The alternative modeling methods are assessed in terms of making satisfactory predictions at un-

tried points. The chosen Meta-model is verified by using the Root Mean Square Error (RMSE) of 

prediction at untried points. The smaller the RMSE value the better the Meta-model. The RMSE 

(square root of the MSE) represents the departure of the Meta-model from the true model. 

CASE STUDY 1: ATTITUDE CONTROL SIMULATION  

The first case study applies the methods of DACE to an attitude control simulation of a tumbling space-

craft using the Basilisk software package developed by the Autonomous Vehicle Simulation (AVS) Labora-

tory at University of Colorado at Boulder. For a given initial state (attitude and rotation rate) and spacecraft 
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design parameters, the software simulates a sun-pointing feedback control problem to determine the motor 

torques controls of the three orthogonal Reaction Wheels (RWs) to achieve a final target state, with zero 

rotation rate. 

The goal of the simulation is to assure that, given a range of initial states and uncertainties of re-

al-life missions, a specific spacecraft design can achieve the de-tumbling maneuver while fulfilling 

a set of mission requirements. For this scenario the following mission requirements are assumed for 

an acceptable maneuver: 

• The attitude will enter and remain within 1º of the goal frame within 5 minutes    

• The RW speeds will not exceed 3000 RPM during the maneuver. 

Inputs & Dispersions 

The model contains 29 inputs, describing the initial state of the spacecraft, the initial rotation 

rates of the reaction wheels, and a set of spacecraft parameters. Each input has dispersions with ei-

ther uniform or normal distributions (detailed in Table 1). 

Table 1. Dispersions on the 29 inputs. 

Input Factor Description Distribution Parameters Units 

Inertial Attitude 
(x,y,z) 

Initial attitude of spacecraft (Euler 
angles with respect to inertial frame). 

UNIFORM [0,2π] (on each component) rad 

Inertial Rota-
tion rate (x,y,z) 

Initial rotation vector in inertial 
frame. 

NORMAL 
Mean 0, std dev 0.25 deg/s 
(on each) 

deg/s 

Mass Mass of the Spacecraft UNIFORM 
Bounds [712:5; 787:5], 
mean 750 

kg 

Centre of Mass 
Offset (x,y,z) 

Position of Centre of mass NORMAL 
Mean [0,0,1], std dev 
[0.0017,0.0017,0.0033] 

m 

Inertia Tensor 3x3 diagonal inertia tensor NORMAL 
Mean diag(900,800,600), 
std dev diag(0.1,0.1,0.1) 

kg.m2 

Inertia Tensor 
Rotation Angle 

(x,y,z) 

Rotation of inertia tensor by 3 Euler 
angles 

NORMAL 
Mean 0, std dev 0.1 deg (on 
each) 

deg 

RW1 axes Spin axis of reaction wheel 1 NORMAL 
Mean [1,0,0], std dev 
[0.0033,0.0017,0.0017] 

- 

RW2 axes Spin axis of reaction wheel 2 NORMAL 
Mean [0,1,0], std dev 
[0.0017,0.0033,0.0017] 

- 

RW3 axes Spin axis of reaction wheel 3 NORMAL 
Mean [0,0,1], std dev 
[0.0017,0.0017,0.0033] 

- 

RW speeds Initial rotation speed of the 3 RWs UNIFORM 
RW1: [95,105], 

RW2: [190,210],  

RW3: [285,315] 

RPM 

Voltage to 
Torque Gain 

Gain in commanded voltage to actual 
torque of RWs 

UNIFORM 
Bounds: [0.019,0.021], 

Mean 0.020 
- 

 



Page 6 of 14 

 

Outputs 

The performance of the de-tumbling maneuver is determined by five output parameters, measur-

ing the rotation rates of the three RWs, and the times taken for the attitude and rotation rate to settle 

to their targeted states.  

Sampling 

To cover the input space, 1000 sample points are produced using the LHS sampling method with 

dispersions on the 29 parameters. For each sample point, time-series data is produced for the five 

output parameters over the duration of the de-tumbling maneuver, from which the maximum values 

were determined. Figure 3 shows a time-series plot of the attitude error (from the targeted attitude) 

for all 1000 sample points using the LHS. 

 

Figure 3. Time-series data of the spacecraft attitude for the 1000 sample points. 

 

Meta-Model 

The inputs and outputs from these 1000 points are used to produce a Meta-model that is able to 

predict the outputs of any untested point in the input space. Several types of models are tested: non-

parametric (Radial Basis Functions and Random Forests) and parametric models (E. G Linear Re-

gression, Quadratic Polynomials). 

Random Forest (RF) is an effective machine learning model for predictive analytics. It is chosen 

as the preferred model due to its ability to simultaneously perform automatic variable selection on 

the large number of inputs (29) in the attitude control simulation. As RF is a non-parametric method 

it does not assume any distributions, making it ideal for a large and complex simulations (as in as-

trodynamics) characterized by a large input space, and an unknown input/output relationship that is 

expected to be highly non-linear.   

The first RF model is the full model, where the regressing the output variable against all 29 input 

variables and draw a variable importance plot and calculate predicted values for the observations in 

the testing set and get RMSE as the discrepancy measure. The second model is fitted using the top 6 

variables only, as shown in the variable importance plot and then repeat the above step. The third 

model is fitted using the top 6 variables plus 1 variable that is not in the top 6 but is considered to 
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be of practical importance in predicting the output variable (combined with expert’s opinion) and 

then repeat the above step. 

To test the predictive power of each method, a Meta-model was produced from 900 of the sam-

ple points. This Meta-model was used to predict the outputs of the remaining 100 sample points and 

compared to the actual results generated from the simulation. Figure 4 shows a plot of the actual vs 

the predicted attitude settle time for the 100 points for the three Random Forest models, plus the 

Quadratic Polynomial. From the plots, it can be seen that there is a spread in the predicted attitude 

settle time. The goodness of the fit was measured by the root mean square error of the residuals. 

Table 2 below shows the RMSE for 4 Meta-models. The "best" model (lowest RMSE) was the 

Random Forest model of 6 inputs. 

 

Figure 4. Predicted vs. Actual outputs for various Meta-Models 
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Table 2. RMSE for various Meta-Models 

RMSE  

RF full model 0.357 

RF reduced 6 inputs model 0.3178 

RF reduced 7 inputs model 0.3186 

Quadratic linear model based on 7 inputs 0.4685 

 

Significant Inputs 

Due to the Principle of Sparsity of Effects, it was expected that only a few inputs will be statisti-

cally significant. This was the case as Figure 5 shows the strength of the significance of each of the 

inputs, expressed as a function of the branching of each input in the Random Forest “Tree”. From 

the results, it can see that the initial state of the spacecraft (initial attitude and rotation rate) are the 

most significant inputs. This makes sense, as these values determine the change in attitude and rota-

tion rate that the RWs need to remove to achieve the final target state. The spacecraft mass and iner-

tia parameters are expected to have small variances, as any large variances would be easily identi-

fied during spacecraft assembly and testing. 

To test the effects of the other 23 remaining inputs, a new set of inputs is generated with a fixed 

initial attitude of [2π/3, 2π/3, 2π/3] and a fixed initial rotation rate of [0.2, 0.1, -0.1] deg. (This ini-

tial state was chosen to give a difficult state to recover from.) A new set of 1000 sample points is 

generated from a LHS with dispersions on the remaining 23 parameters. The new sample points 

show little variation of the 5 output parameters, confirming that, as expected, the initial attitude and 

rotation state have the most significant effect on the outputs. 

Following the initial attitude and rotation rates, the next significant inputs are found to be the 

initial rotation rates of the three reaction wheels, followed by the Voltage to Torque gain.  

The same plot (see Figure 6 below) with initial states removed, shows a different ordering of the 

other parameters (Torque gain is higher). This suggests that the ordering of the significance of the 

other parameters is dependent on the initial state of the spacecraft. 

The effects of the remaining 23 parameters are still much smaller than the initial states.  These 

parameters describe properties of the spacecraft such as the location of the centre of mass, and the 

balancing of the spacecraft relative to its body frame. The variances on these parameters are small, 

as they are determined by the tolerances in construction.  
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Figure 5. Variable selection plot showing the significance of each input 
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Figure 6. Variable selection plot with the initial states removed 

 

Exploratory Data Analysis 

Exploratory Data Analysis was performed on the results produced from the 1000 sample inputs 

to identify input values that exceeded the mission requirements. Figure 7 shows a histogram and 

box and whiskers plot of the attitude and rate settle times. The results show that 95% of the sample 

points had attitude settle times within the 5-minute constraint.  

These results suggest that the maneuver would not meet a 3-sigma success rate per the require-

ments. During mission design and testing, this analysis provides critical insight on the bounding 

cases and on the sensitivity to input parameters. This leads to a better understanding of the space-
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craft’s dynamics and capabilities. In this specific scenario, the simulation would first be validated, 

and the inputs would be examined to ensure realistic values for this maneuver. If the success rate 

remains low, the design of the maneuver or the spacecraft could be modified. The requirements 

could also be put into question as slightly relaxing the required attitude settle time would yield posi-

tive results.  

 

Figure 7. Histogram and Box and Whiskers plot of attitude settle time for the 1000 

points 

Only a single input is found that exceeded the 3000 RPM limit of the RW speeds. The inputs for 

this point are found to have a large 10-sigma draw on the z component of the centre of mass loca-

tion (an error of -35.9 mm from the mean). This error would likely be picked up during inspection 

of the spacecraft prior to launch, so is unlikely to be encountered during a mission. 

In order to further explore the input space, a new set of 10,000 sample points is produced, using 

the same sampling method. This produced two additional outliers that exceeded the maximum RW 

speed requirement. The inputs for these points showed no significantly large draws on any of the 

inputs (the largest was a 2-sigma draw on the y component of the initial rotation rate). 

It is likely that the unique combination of input values for these two points lead to the large RW 

speed outputs. In future analysis, the Meta-model will be used to explore the region surrounding 

these points to find the extent on the region in the input space that leads to outputs that exceed the 

mission constraints. 

Sensitivity Analysis 

The analysis of outliers described above are limited to the output values produced from running 

the finite sample inputs. While the increased 10,000-point set produced additional outliers, the 

computation time increased significantly (by approximately 8 hours). Running additional sample 

points to further explore regions of interest would lead to long run times. We may use the Meta-

model produced to rapidly explore the input space, without needing to re-run the simulation.  

Using the RF Meta-model, a Sensitivity Analysis is performed to test the range of outputs within 

a wider input space to see if the mission requirements are still met. Sets of points are generated to 

test extreme input cases that may be encountered during a mission. Two sets of extreme points are 

tested in the initial analysis: 

A. Initial speeds of 500 RPM on all 3 RWs, as well as a +3-sigma variations on the remaining 

parameters. 
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B. A Hypercube with ±3-sigma variation on the initial rotation rate, and +3-sigma variation on 

the remaining inputs (a total of 23 = 8 points) 

The attitude settle time of set A was found to be 6.166 minutes, exceeding the 5-minute thresh-

old. This value was found to be in the upper range of the results from the 1000 tested, with only 3 

points exceeded this value. Despite the increased initial speeds of the three RWs, the maximum 

speeds were all found to be below the 3000 RPM threshold (the maximum was found to be 1628 

RPM on RW2).  

The results from set B showed that none of points exceeded the mission requirements on attitude 

settle time or RW speeds. This suggests that input regions that exceed the mission requirement are 

not determined by maximum values on each of the input parameters but are instead determined by 

specific combinations of values that may be non-deterministic. This confirms our expectation that 

the Hypercube sampling method may not be sufficient to ensure that none of the inputs exceed the 

mission requirements. 

Future work 

Further testing of the RF Meta-model will test input values expected to lead to extreme output 

results that may exceed mission requirements. This Sensitivity Analysis will be used as a low cost 

/rapid development of the operating window of the entire system under a wide range of worst case 

scenarios. 

In particular, the Meta-model will be used to search regions in the input space that exceed the 

constraints. By analyzing the outliers in the data – we may discover regions around the outlier 

points, where all points within that region will exceed the bounds. 

CASE STUDY 2: MISSION ANALYSIS FOR IBEX 

The Interstellar Boundary Explorer (IBEX) mission is a NASA mission that was launched in 

2008 with a goal of mapping the boundary of the solar system (Reference 8). At the conclusion of 

prime mission, IBEX performed a series of maneuvers to change its orbit for extended mission. Pri-

or to launch, the flight dynamics team for the IBEX mission performed a covariance analysis on a 

number of mission segments including the pre-launch trajectory design, post-launch orbit verifica-

tion, post-launch ascension planning, and long-term orbit evolution. 

The purpose of the analysis was to ensure that given uncertainties in the initial state vector and 

uncertainties in the magnitudes of each maneuvers, the resulting trajectories would meet a set of 

mission requirements. The main mission objectives were that the orbit’s radius of perigee does not 

drop below 2.3 Earth radii, and that the eclipse time in Earth's shadow does not exceed 4 hours.  

For each of these mission scenarios, a set of perturbed initial states were generated using two 

sampling methods: First, a traditional Monte Carlo simulation with 1000 random draws from the 3-

sigma covariance ellipse, and secondly, the 3-sigma vertices of a Hypercube with 128 points. Each 

sample point was propagated using AGI's Systems Tool Kit (STK), producing time-series data of 

the perigee radius, eclipse time, and other trajectory parameters. This data was used to confirm the 

mission design would meet the trajectory constraints for a specified variance on the input parame-

ters. The details of this analysis were presented in Reference 9. 

Mission Scenario  

In this case study, we repeat the same analysis as that presented in Reference 9, focusing on the 

final extended mission of IBEX (Reference 10). Following its primary mission, the spacecraft per-

formed a series final orbit raising maneuvers to place it into a highly elliptical orbit of period 9.1 

days.  
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The inputs to the simulation are the initial state of the spacecraft prior to the final orbit raising 

maneuver, and the magnitude of the delta-V of the final maneuver. Perturbations are added to each 

of these 7 inputs to account for the uncertainty of the initial state, and the performance of the ma-

neuver execution. The uncertainty in the initial state is described by a 6x6 covariance matrix, gener-

ated from orbit determination. The coordinates of the perturbed states are expressed in the frame of 

the principle axis of this covariance matrix, found through a Cholesky decomposition. 

The uncertainty in the delta-V of the maneuver is normally distributed with mean a mean around 

77 m/s with an uncertainty of about 3%. (The uncertainty is due to the uncertainty in the predicted 

tank pressure at the time of maneuver ignition.) 

Application of Sampling Methods 

The previous analyses (Reference 9) generated two sets of perturbed initial states using 1) Ran-

dom sampling over 1000 points and 2) Hypercube sampling on a 7-dimensional Hypercube with 

vertices at ±3-sigma in each input. 

Similar to Case Study #1 above, in this Case Study we will test a range of space- filling designs, 

including: 

• Latin Hypercube Sampling (LHS)  

• Maximin and minimax statistics 

• Uniform designs 

• Orthogonal array-based methods  

 

Each of the sample points is propagated forward in STK for 1014 orbits (approximately 25 

years) producing time-series data of the perigee and eclipse times. The objective is to confirm that 

for any perturbation of the initial state, the trajectory will meet constraints on the minimum periap-

sis radius and maximum eclipse time. 

Expected Results 

The Hypercube contains points with combinations of 3-sigma draws on each of the input param-

eters. It is expected that these points represent the extreme cases of the inputs that are likely to oc-

cur in the mission, and thus lead to extreme output values. However, the Hypercube method only 

covers the boundaries of the input space. We expect that there may be internal regions in which 

combinations of the inputs generate outputs that exceed the mission bounds (as was found for the 

RW speed outputs in Case Study 1). 

In the previous analysis, the Hypercube sampling method was chosen for its simplicity, and the 

3-sigma value was chosen arbitrarily. We will suggest alternative space filling methods which will 

give greater confidence that we will more efficiently sampling the entire input space, as the Hyper-

cube sampling does not necessarily cover the entire input space. While the outputs of all these runs 

all met the mission constraints, there is no guarantee that there is not any "convexity" in the input 

space - e.g. regions where the outputs do exceed the constraints. 

Using the LHS and other space-filling methods, we expect to cover the input space in a wider 

range than the Hypercube, such that we may be more confident that there are no convex regions that 

exceed the bounds. We expect this can be achieved with fewer sample points than simple random 

sampling method, with a significantly lower computation time. 

The initial study of IBEX was produced early in the IBEX mission. The IBEX mission is now in 

its 10th year, with ephemeris data available. The final analysis we will perform will be to compare 
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the actual time-series results to those predicted by the model. This will confirm the accuracy of the 

propagation.  
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