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ABSTRACT

With a large and ever-growing number of resident space objects (RSOs) in orbit
around the Earth, the efficient tasking of sensors is critical to track objects and
maintain reliable state estimates of objects across a catalog. This paper describes
a scheduler developed to task sensors in a way that maximizes the total utility of
a sensor network, measured in terms of information gain, or the reduction in Rényi
a-divergence of object state covariances. The program contains several features
such as object prioritization, customizable propagators, and the capability to
schedule both optical and laser sensors. The program has been fully implemented
in C++ and can schedule a catalog containing over 20,000 objects (building up to
100,000 objects) with up to 6 sensors (building up to 72 sensors) in real-time. The
scheduler is currently in use for catalog maintenance by the Space Environment
Research Centre at its Mt Stromlo Facility in Canberra, Australia.

1. INTRODUCTION

The efficient scheduling of sensors is important for the field of Space Situational Awareness (SSA). Sen-
sor scheduling assists the maintenance of catalogs containing orbital data on resident space objects (RSOs).
The accuracy of these catalogs is imperative for issuing reliable conjunction and threat warnings, as well as
developing better space situational and domain awareness.! The Industrial Sciences Group (ISG) and the
Space Environment Research Centre’s (SERC) Space Asset Management program collaborated on the de-
velopment and implementation of mathematical models and software to optimize sensor scheduling and task-
ing for a network of sensors. The resulting program seeks to maximize the total information gain across the
sensor network, which increases sensor utilization, and indirectly minimizes idle time. The program also
facilitates catalog maintenance as it favors the scheduling of objects with greater covariances as demonstrated
in Figure 1.
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Figure 1. Object covariances over time. Drops in error are due to objects being measured.

The program uses as inputs a catalogue of space objects, with initial state vectors and covariances, and a
set of active and passive optical sensors across Australia. Each object is propagated forward using an Un-
scented Kalman Filter (UKF) over a 12-hour period to determine visible passes that may be tracked by each
sensor. The program outputs a schedule for each sensor and details the tracking times of selected objects over
this period.

The program accounts for asynchronous assignment windows, computes the cumulative information gain
from multiple observations, scales information gain for high priority targets, and adds constraints on laser
measurements. The program optimizes sensor utilization by producing sensor-object assignments that max-
imize the information gain — that is, the reduction in object covariances — for each assignment window
throughout the schedule. The program and algorithms were successfully tested by SERC on a catalogue of
20,000 objects with 6 sensors. It is now being used by SERC to produce a daily schedule.

The success of this project required a multi-disciplinary team with expertise in astrodynamics, statistics,
information theory and software engineering. With the addition of multithreading capabilities, the software
is fully implemented and tested in C++ and can schedule a catalog with over 100,000 objects (all known
space debris objects) with a network of 72 sensors in real time.

The program implements Gehly’s design of a multi-sensor information-gain-based scheduler, which uti-
lizes the Rényi a-divergence to quantify the amount of information gain that would be obtained by making
by a measurement.? The program additionally uses an auction algorithm described by Bertsekas* which uses
an economics-based bidding approach to maximize the total reward, or information gain, made by the sensor
network.



2. CHALLENGES
Processing Requirements

The practical component of scheduling imposes several additional requirements to the project, particu-
larly when considering real-time scheduling requirements on a full catalog of objects. To generate a schedule
in real-time, the program’s processing speed must be faster than the time interval it simulates. Real-time
schedule generation allows live measurement data to be integrated into the latest state estimates, but also
involves additional overhead costs associated with sensor data processing and transfer time. Additionally,
data for every object in the catalog is required to be simultaneously held in memory, as schedule generation
requires the whole catalog to be processed at the same time. Additionally, it was highly preferable to meet
these requirements without resorting to distributed computing, which would significantly increase the com-
plexity of the project. Our approaches to solve these problems are outlined below.

Choice of Programming Language. The original version of the program was written in Python. However,
the run-time was prohibitively slow even when utilizing multithreading and code optimization. Thus the
decision was made to rewrite the program in C++. Run-time comparisons between the two versions showed
that the C++ version ran roughly 100-200 times faster than the Python code, due to the inherent differences
between the two languages and the ability for C++ to perform speed optimizations at compilation time.

Code Profiling and Optimization. Code profiling was performed to identify key ‘problem areas’ of the
program that were taking up significant amounts of execution time, with optimization efforts being focused
on these sections. Significant reductions in run-time were achieved by passing data structures by reference
(instead of copying the whole data structure for each function call), rewriting slower methods with more
efficient algorithms (particularly important with large catalog sizes), and choosing data formats with lower
write-time speeds (which contributed significantly to the program run-time).

Multithreading. Multithreading was performed in sections of the code where each object was processed
independently of the others (e.g. calculating object rewards over a single assignment window), which allowed
for the program run-time to be significantly lowered. Measures were put in place to ensure that threads were
synchronized before executing serial code (e.g. for the auction algorithm), and to ensure that the code was
thread-safe.

Memory Management using Recursive Filtering. Each object within the catalog generated a substantial
amount of data during run-time, which needed to be exported for later use. Retaining all data for the entire
catalog would require exorbitant amounts of memory (RAM), so alternative approaches were considered. It
was noted that the Kalman filter is an optimal recursive filter, in that the filter incorporates all information
that is provided to it, and that the filter does not require all past data to be reprocessed each time that an
estimate is made.® Thus, by using a UKF to estimate object states, only the most recently calculated estimates
were required, so at the end of each assignment window the program could clear old data from memory
without impacting future estimation. This slightly increased program run-time but allowed the program to
process full object catalogs (100,000+ objects) without requiring specialized hardware.

Positive-Definite Matrix Requirements

The UKF uses the Cholesky decomposition to generate sigma points due to its numerical efficiency.’
However, this decomposition is only stable on positive-definite (PD) matrices, which cannot be guaranteed
when importing data, or throughout the duration of the program. This issue was addressed by implementing
a correction algorithm on non-PD matrices to find the nearest PD matrix,” which allowed the program to be
robust to non-PD covariance matrices.



3. PROGRAM OVERVIEW

The program takes in object state data and produces a schedule with sensor-object assignments that max-
imize the total network information gain. The program is split into two main parts — the Scenario Generator,
which imports and pre-processes object and visibility data, and the Scheduler, which generates the schedule.
This process is described in greater detail below and summarized in Figure 2.

Data Input
At the start of the program, the Scenario Generator takes in the following data:

Object state and covariance data from the user’s catalog

Object two-line element (TLE) data

Satellite Catalog (SATCAT), for RCS and operational status

Naval Observatory Vector Astrometry Software (NOVAS) Bulletins, for time system conversions

Object state data is transformed into the Earth-centred inertial (ECI), true-of-date (TOD) coordinate frame
and stored in the program in an object catalog. Objects with missing data are initialized using TLE data from
publicly available databases, and objects with missing covariance data are given large, ‘default’ covariances.
SATCAT and NOVAS Bulletin data are stored for later use throughout the program.

Schedule Pre-Processing

The Scenario Generator then preprocesses object and visibility data to be used later in the program during
schedule generation. This increases the Scheduler run-time speed to allow it to run in real-time if required.
Firstly, all objects in the catalog are ‘brought forward’ in time to the start of the schedule using a UKF predict
method (see Section below ‘Unscented Kalman Filter’). Secondly, object states are propagated throughout
the schedule in 60-second steps, and sensor-object visibilities are calculated at each interval. The following
parameters are considered when calculating sensor-object visibility:

e Sensor elevation/range limits

e  Apparent magnitude (based on RCS and Sun angle (sun-satellite-station), assuming the satellite is a
diffuse sphere)

Sky darkness (based on time of day and sensor location)

Phase angle (sun-station-satellite)

Sun angle

Moon angle (moon-station-satellite)

Radii < Earth’s equatorial radius

Laser link budget (laser sensors only)

Sensor slew rate — based on previously-assigned satellite and starting position of current satellite

Schedule Generation

The Scheduler simulates measurements of all valid sensor-object pairs and generates a schedule which
maximizes the total information gain made by the sensor network. Firstly, sensor-object visibilities at each
time step are used to predict object passes. For each pass, measurements are simulated to predict the infor-
mation gain expected if the object was measured by the associated sensor for that pass. Information gain is
calculated by the decrease in object state covariance size, as measured by the reduction in Rényi a-divergence
(see Section “Information Gain”).?

After information gain rewards are calculated for all visible sensor-object pairs, an auctioning algorithm
is utilized to assign a unique object to each sensor, such that the total reward of the sensor network is



maximized. Finally, assigned tasks are executed and the object state estimate and covariances are updated to
reflect the new data.
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Figure 2. Flowchart of the Program.



4. PROGRAM FEATURES

The Scheduler generates a schedule that maximizes the total information gain of the sensor network. This
requires the use of several features, detailed below.

Asynchronous Tasking

To minimize idle time caused by sensors having to ‘wait’ for other sensors to complete their tasks, a
method of asynchronous tasking was developed, involving a combination of unit time-slots and larger win-
dows to consider consecutive visibilities that would occur during a pass.

The schedule starts when the first visibility occurs (i.e. when an object is visible to any sensor for first
time) and ends at the final visibility of the night. The Scheduler divides the entire schedule into 5 second
observation steps, which represent the time resolution of the schedule. Each observation step represents a
schedule slot in which a sensor can be assigned an object to measure continuously for 5s.

Rather than tasking at each observation step, selections are made over 120-second assignment windows.
This allows passes that last longer than a single observation window to be measured continuously, thus re-
ducing sensor slew time required to switch between different objects. There are several variables used in
asynchronous tasking:

o window_start — Start of assignment window, set at the earliest sensor starting time

e ti_max — Stop time of assignment window = window_start + max_task_length

e ti_sensor (Unique to each sensor) — Start of when the sensor is available to start tracking within
assignment window; given by the stop time of its previous task

e min_task_length — Minimum task length (30s). Passes shorter than this length are not considered to
be valid.

e max_task_length — Maximum task length (120s)

e max_sync_time — Maximum time sensor can be ahead of first sensor (240s)

A common stop time is used for all sensors, at a fixed interval from the window start time, so sensors that
start later will have a shorter duration over which to consider tracking objects. This is done to keep the
scheduling of the sensors from becoming too unsynchronized. If the duration between a sensor’s start time
ti_sensor and the end time ti_max is less than the minimum pass duration (min_task_length), no passes are
valid. The sensor would not select an object during this assignment window — instead it would wait for the
other sensors to “catch up”.

To help keep the sensors synchronized, a check is added to specify when a sensor is too far ‘ahead’ of the
others. If in the previous assignment window, Sensor A’s start time was ahead of any of the stop times of the
other sensors, then tasking would be skipped for Sensor A in the current assignment window. An example of
this can be found in Figure 3.
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Figure 3. Diagram of synchronization constraint.

Unscented Kalman Filter

A UKEF is used to calculate object states and covariances throughout the schedule, as well as optimally
incorporating measurements into the current state estimates. The use of a UKF allows orbit non-linearities to
be handled accurately.®

There are a few trade-offs in using a UKF. Firstly, calculation of covariances is performed by using a
minimal set of sample points around the mean. These sigma points are individually propagated forward in
time when performing the UKF predict method, which adds to the run-time required to process each object
at each time-step. This was addressed by using C++, code optimization, multithreading and by restructuring
the UKF predict process to calculate covariances with a faster propagator (see Section below “Propagators”).

Secondly, the use of a UKF places additional requirements on the propagator used, by the fact that the
propagator must have ‘state-to-state’ functionality — i.e. it must be able to take in an object state (in ECI
TOD) and output the propagated object state (in ECI TOD). This requirement is due to the way that sigma
points are handled — the initial covariance is used to generate thirteen sigma point states, each point is prop-
agated forward, and the modified states are combined into a covariance using the unscented transform. This
process requires the propagator be able to take in object states in ECI-TOD and output object states in ECI-
TOD. A unique problem was posed when using propagators without this characteristic — for example, SGP4.
The Section “Propagators” outlines the approach taken to work around this restriction imposed by the UKF.

Propagators

The UKF predict method contains a system model that uses propagators to specify how the system be-
haves over time. Modularity and configurability were emphasized with regards to propagator integration with
the program. This was done to facilitate future program maintenance and to help balance accuracy with run-
time speed. For example, a simple analytical propagator would deliver poor accuracy but a fast run-time,
whereas a complex numerical propagator would deliver the opposite. Careful configuration allows these
characteristics to be leveraged in sections where speed is more critical than accuracy, and vice versa.

Also, the UKF predict method has been modified to allow two propagators to be used in parallel. The
UKF predict method uses a fast 2-body propagator to calculate the new covariance, while the new state is
calculated using a slower, but more accurate propagator — as shown in Figure 4 and Figure 5. This modified
setup reduces program run-time but also preserves accuracy of calculated states. Additionally, this setup
allows for a ‘non-state-to-state” propagator (such as SGP4) to be used (Figure 4).
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Figure 4. Flowchart of the Scheduler UKF, using SGP4 as a propagator.
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Figure 5. Flowchart of the UKF Predict Method, with Added State Recalculation.

Reward Function

Within each assignment window, the reward for each object-sensor pair is calculated from the cumulative
information gain over each observation step within a pass. At each observation step, the UKF-predict method
is performed to predict the prior state and covariance at the current time (prior to measurement). A perfect
observation is then simulated, using from the predicted state vector transformed by the measurement function
h(). This measurement is then used within the UKF-update step to compute the posterior state and covariance.
The information gain is then calculated as a function of the prior and posterior covariances

Information gain. Information gain is calculated using the Rényi a-divergence between the prior and
posterior state covariances. An assumption is made that the Rényi function has an additive property, such
that the total information gained over several observations is the cumulative sum of the incremental infor-
mation gains from each observation. The program implements the equations described by Gehly? and repre-
sents the reduction in covariance due to the fusion of measurement data into the current state estimate.

Obiject Prioritization. Object prioritization is performed using a “Tactical Importance Function” t (tau)
that can be used to scale the reward function for different objects based on their importance or priority, also
described by Gehly.® This allows objects to be prioritized by their attributes (orbital regime, size), custom
prioritizing (e.g. particular objects) or a combination of these categories. The t (tau) function also acts as a
scaling factor to adjust the gradient of prioritization, i.e. how much prioritization scales the original rewards.

Auction-style Task Selection

Once all rewards have been calculated, object-sensor pairing is performed by an auction algorithm, im-
plementing the algorithm described by Bertsekas.* This algorithm uses a series of bidding rounds to maximize
the total reward of object-sensor pairs, producing a schedule that maximizes the total information gain made



by the sensor network. These selections are then executed by sensors, resulting in improvements in the accu-
racy of object state estimations, as shown above (Figure 1).

5. PROGRAM PERFORMANCE

This section outlines the program’s run-time performance when running a full schedule, with relation to
the number of objects processed and the number of sensors within the sensor network. Testing was performed

on two machines with varying specifications to characterize the program’s run-time performance, summa-
rized on Table 1.

Table 1 — Test machine specifications

Machine 1 Machine 2
(Consumer Grade Laptop) | (Commercial Desktop)
CPU Intel Core i7-8650U Intel Core i7-8700
Clock Speed 1.90GHz 3.2GHz
# Cores 4 6
Memory (GB) 8 32

Run-time Variable Dependence

As expected, the program increases in run-time linearly with increasing number of objects, as shown in
Figure 6. Additionally, run-time increases slightly more than linearly as the number of sensors is increased,
as shown in Figure 7. These values were calculated with Machine 1.
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Figure 6 — Scheduler run-time for an increasing number of objects (Machine 1)
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Figure 7 — Scheduler run-time for an increasing number of sensors (Machine 1)

Multithreading

The program involves processing each object in the catalogue in sequence and independently of each
other, which is classified as a High Throughput Computing (HTC) problem. HTC problems can be parallel-
ized with multithreading and/or distributed computing. At present only multithreading is implemented, but
distributed computing may be considered in the future for further performance enhancements.

To implement multithreading for processing the object catalogue, a thread pool was created with its size
dependent on the number of hardware processing cores available and whether hyperthreading was available.
Each object was placed in the thread pool queue, and then each thread would take an object off the queue
and execute the necessary processing, independently of each other. Once all the objects were processed, the
threads would end and the program would continue as normal.

The following graphs show the decreasing run-time of the scheduler as the number of threads increases,
where “Ideal” refers to the theoretical minimum run-time based on the increased resources. This is inversely
proportional to the number of threads, such that 2 threads halve the original run-time, 3 threads use a third
the original run-time and 4 threads is a quarter of the original run-time. When increasing the number of
objects, the improvement in run-time thread speed-up is increased, as shown across Figures 8-9. Similarly,
when increasing the number of sensors, the same effect can be seen, as shown across Figures 9-10. This is
due to the fact that the ratio of serial vs. parallel code decreases as the number of objects and sensors increase.
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The run-times on Machine 2 are shown in Table 2. Estimated values are shown in italics and are estimated
based on the speed-up ratios calculated in Figures 8-10.



Table 2 — Multithreaded run-times on machine 2 (estimated values are in italics)

Threads Objects Sensors | Run-time (sec) | Run-time (hrs)
1 20,000 6 4,356 1.21
1 100,000 6 18,728 5.20
4 100,000 6 7,154 1.99
1 20,000 72 52,853 14.68
4 20,000 72 15,846 4.40

Future Improvements & Applications

To further improve the run-time speed of the program, several approaches may be made. Firstly, simply
using a faster server class machine with more cores would provide a faster run-time, particularly when pro-
cessing catalogs with many objects or using a large sensor network. If further improvement in run-time is
required, then further parallelization of the code could be performed to enable distributed computing across
multiple machines. This should only be attempted once all avenues of optimization and parallelization have
been exhausted in the multithreaded program.

A future improvement to the Scheduler will include dynamic scheduling. This will allow the schedule to
be updated and changed in real time due to changes in weather conditions effecting visibility (for example).

A significant application of the Scheduler Visibility Module will occur in late 2019 when SERC tests
laser manoeuvring of space objects. This a key goal of the Space Asset Management program in SERC,
(Research Program 3) “At SERC the goal is to contribute to the mitigation of the debris environment by us-
ing high powered continuous wave lasers to apply photon pressure to perturb objects on orbit so that they
avoid a collision. To demonstrate this goal, several operational components are needed to ensure a debris
object is not moved into a less favorable trajectory... This requires knowledge of all objects and their be-
havior in the vicinity of the demonstration.” * Using a set of 50 target objects chosen by SERC the visibility
module will be used in simulation (before the laser campaign) and during the campaign on actual data. The
objective is to use tracking data of the visible objects before/after the laser firing to provide a statistically
valid confirmation and quantification of manoeuvre detection. We will also optimize the targeting cam-
paign by quantitatively describing effect of inputs (laser power, duration and geometry of engagement,
number of passes, ballistic coefficient of object) on the response (change in orbital parameters in an object
due to photon pressure).

6. CONCLUSION

A Case study has been presented of the design and development of an optimised sensor scheduling and
tasking program for tracking space objects. The program can schedule a catalog containing over 20,000
objects (building up to 100,000 objects) with up to 6 sensors (building up to 72 sensors) in real-time. The
scheduler is currently in use for catalog maintenance by the Space Environment Research Centre (SERC)
at its Mt Stromlo Facility in Canberra, Australia.

We have described the major design features of the scheduler that tasks sensors to maximise the total
utility of the sensor network measured in terms of information gain or the reduction in Renyi divergence of
object state covariance. We also described the main features of the program such as object prioritisation,
customizable propagator, and the capability to schedule both optical and laser sensors.



Due to the practical nature of the project, several unique challenges were faced, particularly with re-
gards to processing a full object catalog while meeting real-time scheduling requirements. These challenges
were solved through a combination of different approaches, including the choice of programming language,
program optimisation and structuring the program to be able to be multithreaded. This speed advantage
from parallelisation has been quantified, showing that multithreading gives increased benefits as both cata-
log size and sensor network size grows.

Future work and applications are described including the use of the visibility module of the Scheduler
for a laser targeting campaign to occur in late 2019 soon to test manoeuvring of space objects by laser pho-
ton pressure.
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