

Use of advanced Kalman filtering and statistical techniques for error correction and positioning accuracy in Geoscience Australia's Ginan software toolkit

Mark Yeo; David Shteinman (ISG) Simon McClusky (Geoscience Australia) *May 2022, Locate Conference, Canberra*

Suite 1, 13 Ridge Street

North Sydney, NSW 2060

2022 @ All material presented in this document is confidential & remains the copyrighted property of Industrial Sciences Group

Australia

Industrial Sciences Group

15 years' experience in implementing state-of-the-art research in advanced analytics to deliver commercial outcomes

8 Core Capabilities all under 'One Roof'

Advanced Analytics

Astrodynamics

Space Situational Awareness

Scientific Programming

Multi-disciplinary and

multi-sector approach

with skills and expertise in:

Process Optimisation

Simulation

Outline

Section 1 The Ginan software toolkit ISG's contributions to Ginan

Section 2 Smoothing

Section 3 First-order Gauss Markov modelling

"How do I improve the accuracy of my GPS position?"

01 **The Ginan** Software **Toolkit** A Brief Overview

Better corrections = better positioning

Ginan – ISG Contributions

- **Smoothing** RTS, fixed-lag
- State-transition modelling clock rate & acceleration, First-order Gauss-Markov
- Filter stability non-PD covariance reshaping, Joseph stabilisation
- Outlier detection time-series, Chi-squared, cycle slip detection + repair
- Processing satellite laser ranging data

02 Smoothing The Benefit of Hindsight

t = 0

t = 0

t = 0

'Smoothing' – an 'a posteriori' form of estimation (estimation using hindsight)

Backward Pass

Forward Pass Backward Pass

Forward Pass Backward Pass

03 **First-Order Gauss-Markov** Modelling **Using the Right Model**

Zero correlation Zero-mean ∞ correlation No mean

FOGM modelling in Ginan

[Graph of FOGM results]

Better corrections = Better positioning

Conclusions

Better corrections = Better positioning

Conclusions

- Outcomes
- <mark>[???]</mark>

Better corrections = Better positioning

Questions

Appendix

RTS Smoothing Equations

$$\hat{\mathbf{x}}_{k|n} = \hat{\mathbf{x}}_{k|k} + \mathbf{C}_k \left(\hat{\mathbf{x}}_{k+1|n} - \hat{\mathbf{x}}_{k+1|k} \right)$$

$$\mathbf{P}_{k|n} = \mathbf{P}_{k|k} + \mathbf{C}_k \left(\mathbf{P}_{k+1|n} - \mathbf{P}_{k+1|k} \right) \mathbf{C}_k^{\mathsf{T}}$$

where

$$\mathbf{C}_k = \mathbf{P}_{k|k} \mathbf{F}_{k+1}^\mathsf{T} \mathbf{P}_{k+1|k}^{-1}.$$

RTS Smoothing Equations

$$\begin{aligned} \hat{\mathbf{x}}_{k|n} = & \hat{\mathbf{x}}_{k|k} + \mathbf{C}_k \left(\hat{\mathbf{x}}_{k+1|n} - \hat{\mathbf{x}}_{k+1|k} \right) \\ \mathbf{P}_{k|n} = & \mathbf{P}_{k|k} + \mathbf{C}_k \left(\mathbf{P}_{k+1|n} - \mathbf{P}_{k+1|k} \right) \mathbf{C}_k^\mathsf{T} \end{aligned}$$

where

$$\mathbf{C}_k = \mathbf{P}_{k|k} \mathbf{F}_{k+1}^{\mathsf{T}} \mathbf{P}_{k+1|k}^{-1} \xrightarrow{\mathsf{More pro}} \mathbf{Larger}$$

More process noise =

$$\rightarrow$$
 Larger P_{k+1|k}

- \rightarrow Smaller P_{k+1|k}⁻¹
- \rightarrow Smaller C_k
- \rightarrow Smaller impact of future states

Fixed-Interval Smoothing (RTS)

 Batch-processes data within a fixed time interval (e.g. daily)

 Improves estimation accuracy across whole interval, particularly towards the start of run

Fixed-lag Smoothing

 Processes data in near-real-time, depending on lag N

 Improves estimation accuracy within the last N timesteps

Fixed-lag Smoothing

 Processes data in near-real-time, depending on lag N

 Improves estimation accuracy within the last N timesteps

Fixed-lag Smoothing

 Processes data in near-real-time, depending on lag N

 Improves estimation accuracy within the last N timesteps

Program flow

Forward Pass Backward Pass

[replace w position?]

Variance

0.15

Phase Residual

Observation Residuals

Forward Pass Backward Pass

Phase Residual

Observation Residuals

Forward Pass Backward Pass

Better corrections = Better positioning

