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ABSTRACT 
 

As the quantity of orbital debris continues to grow, so too does the rate of conjunction messages that suggest 

possible collisions between high value payloads and debris. The abundance of these conjunction messages, and 

eventual misses, has led to a culture of ignored alerts, and an increase in satellite operation costs as a result of 

the frequent need to plan resources for maneuver planning and execution. The loss of “trust” in conjunction 

alerts is due to the poorly characterized evolution in probability of collision (Pc) as time approaches the time of 

closest approach (TCA) between two objects, as well as the interpretation of Pc in the context of maneuver 

planning. To address these problems, and in collaboration with the NASA Conjunction Assessment Risk 

Analysis (CARA) program, the Industrial Sciences Group has developed a novel Maneuver Decision Support 

System (MDSS) to assist satellite operations in conjunction assessment and Maneuver planning. It provides a 

meaningful and intuitive Urgency metric for actionable maneuver decisions, based on the physical dynamics of 

conjunctions. It is based on a forecast of the evolution of Pc over time and represents an advance over current 

methods that are in use for satellite conjunction monitoring and planning. The result is to give satellite operators 

a validated decision support systems to plan for maneuver execution or mitigation or monitoring up to 3 days 

before TCA  

 

1. INTRODUCTION 
 

As is well known there is a need for the development of a rigorous Space Situational Awareness (SSA) framework, 

which includes the goal of keeping track of objects in orbit by measuring and predicting their path with a regular 

cadence, and in turn predicting potential collisions. However, given the significant number of objects that are 

currently operating within the low earth orbit (LEO) regime, in addition to the numerous pieces of existing debris 

(>36,000 objects greater than 10cm in size), the task of deciding when to maneuver a satellite can be challenging for 

an operator [1].  

 

To tackle the emerging problem of reliable conjunction analysis, Industrial Sciences Group (ISG) has developed a 

decision support tool to provide a recommended course of action up to 2.5 days ahead of a maneuver commitment 

point, derived from computed forecasts of future probability of collision (Pc), following the detection of a 

conjunction. The MDSS is comprised of three distinct components: 1) Prediction of the future statistical evolution of 

position covariance of both objects; 2) characterization of the potential change in miss distance between both 

objects; 3) interpretation of predicted trends into actionable maneuver decisions using a weighted urgency metric. 

The formulation of these metrics was tuned extensively in collaboration with members of the NASA CARA 

operations team to ensure that the decision support tool produced reliable and predictive recommendations to 

operators. 

 



1.1 Tool capabilities 
 

The MDSS automates a complex analytical workflow and increases the confidence in predictions of collision 

likelihood, allowing satellite operators to make confident, timely decisions for satellite maneuvers irrespective of the 

scale of satellite operations. The MDSS software includes the systematization of a previously subjective analysis and 

incorporates several innovative statistical methods into conjunction analysis. The MDSS automatically incorporates 

metrics that would currently require a skilled analyst’s expertise to produce recommendations on a case-by-case basis.  

 

The overall structure of the decision support tool developed is outlined in Fig. 1. The research article for the modular 

software package is written in Matlab, as per the recommendations from NASA CARA; but there is now also a Python 

instantiation. The parameters for tuning or making any adjustments to the underlying functionality of the package 

(urgency metric functions and weightings, number of bootstraps etc.) can be found in the “set framework parameters” 

function. The core function is “Decision tool,” as this imports CDM data and exports the final urgency metric (with 

associated metadata such as individual metrics). The core of the tool “PredictPc” uses a network of 13 Gaussian 

Process Regression (GPR) models, trained on a large dataset of CDMs, to individually fit primary and secondary 

object covariance elements, as well as miss distance volatility.  

 

 
Fig. 1 Decision Support System (MDSS) structure. 



The main driver behind the determination of a conjunction event’s urgency is the Pc between the primary and 

secondary object. The primary object is the active spacecraft, and the secondary object can be either another intact 

satellite or a piece of space debris. Pc calculation has emerged as the standard way to assess the threat of a collision, 

and the means of filtering events for further assessment. In a single value, it captures the effect of covariance size, 

miss distance, the orientation of the covariance ellipsoid and the size of the objects. However, there are many sources 

of uncertainty that make Pc estimation change over the course of time including: 

 

• Uncertainty in the model dynamics 

• Sensor errors such as measurement noises and navigation biases 

• Numerical errors and approximations 

• Propagated uncertainties 

• Spacecraft size uncertainty 

• Atmospheric density forecast and space weather error 

• Satellite frontal area stability uncertainty 

 

There are ongoing efforts to negate the effects of these errors; however, they can never be eliminated. A key approach 

used by ISG to address them is the use of a supervised machine learning model called Gaussian Process Regression 

(GPR) to forecast Pc. By training on a database of CDMs from historical conjunction events, the tool predicts the 

covariance behavior of the two objects of interest over time, as well as the volatility of the miss distance (and hence 

the posterior distribution of change in miss distance at TCA). 

 

 
1.2 Gaussian Process Regression 
 

To determine the behavior of a conjunction event over time, the future evolution of covariance and miss distance must 

be forecast. As part of the MDSS we fit a total of thirteen Gaussian Process Regression models, six models for each 

object’s covariance and one for miss distance volatility. This method was selected as it allows for the quantification 

of uncertainties in each Pc computation, and no restrictive assumption about the data is imposed. The crucial 

component that allowed us to develop this tool is the satellite event database supplied by CARA. This set of more than 

400,000 conjunction data messages contains information on satellite ephemeris, drag, energy dissipation rate, etc. 

needed to fit time series regression models. These were collected over a four-year period, containing conjunctions 

involving 25 high-value NASA science satellites. 

 

Gaussian Process is the generalization of a multivariate Gaussian distribution to infinitely many variables [2,3]. It is 

an extension of the idea of taking a probability distribution over numbers, to a probability distribution over functions. 

This idea is to regress a training set of input 𝑿 = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛}, where every 𝑋 is a vector with dimensions equal 

to the number of regressors, to a corresponding set of outputs 𝒀. This is achieved by having a prior distribution over 

functions, which in Bayesian statistics represents the prior belief over the type of functions one expects before seeing 

any of the outputs.  

 

This zero-mean prior distribution is visualized in Fig. 2 with a set of randomly drawn sample functions. Zero mean 

indicates that the average of the function so far does not depend on 𝑿 and averages to 0. The grey band signifies the 

2-𝜎 standard deviation with a given input 𝑿. When a corresponding output 𝒀 is observed with a corresponding 𝑿, only 

functions that go through or pass near the 2 observations are now considered, as shown in Fig. 2b. The dotted lines 

now show a subset of the posterior distribution over functions, and the solid line is the mean of the posterior 

distribution. This mean function is denoted as 𝜇(𝑿), and the specification of the prior regarding its functional form is 

denoted as 𝐾(𝑿1, 𝑿2). The function 𝐾(𝑿1, 𝑿2), referred to as the kernel function, constitutes the core of the training 

process and plays a major role in its prediction accuracy. The estimated mean function is then used to make predictions 

𝒀𝑛𝑒𝑤 , on new incoming data 𝑿𝒏𝒆𝒘. For this tool, the 1-dimensional 𝑿 in this example is extended to a 13-column 

vector.  



 
Fig. 2 Four samples drawn from a prior distribution (left) and a mean prediction (solid line) with four samples from 

the posterior distribution (right). The convergence of the posterior functions with 2 observations is also indicated 

(right) [2]. 

 

To get a higher resolution on the estimated mean function and lower the uncertainty bounds, a sufficiently-sized 

sample is required. Using the large data set provided (NASA CARA CDMs), we developed a mean function that can 

cover the (up to) 13-dimensional solution space for each model, which significantly contributes to the predictive power 

of the tool.  

 

A significant part in the process of developing a GPR model is choosing the covariance function and setting the best 

hyperparameters. The kernel function below is the ARD (variable length scale) exponential kernel we used for 

covariance modelling:  
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The covariance function 𝑲(𝑿, 𝑿), is a square matrix with dimensions in accordance with the training set size i.e., a 

model trained with 12 000 rows will have 𝑲(𝑿, 𝑿) size 12 000 x 12 000. Each entry of 𝑲(𝑿, 𝑿) contains a kernel 

function 𝑘(𝑥𝑖 , 𝑥𝑗|𝜃), which transforms the difference 2 observations 𝑥𝑖 and 𝑥𝑗 into an exponential relationship. 𝜎𝑚 is 

the variance or length scale of each individual regressor, and 𝜎𝑓 is the function noise. The choice of this covariance 

function was based on research across different kernels, with ARD squared exponential demonstrating the minimum 

RMSE in predicting a consecutive covariance entry. 

 

 

 

1.3 Covariance prediction 
 

There are many formulations that exist currently that compute high-value collision probability in various ways. In our 

tool, the set of assumptions and simplifications are in accordance with Alfano in 2005 [4]. Both primary and secondary 

objects are assumed to be spherical, with the diameter defined by the maximum dimensions of either object. This 

eliminates complexities in relation to the attitude of the object when calculating Pc. The relative motion is considered 

linear, as even though both objects are orbiting the Earth, but the velocity is much greater in magnitude in comparison 

to its acceleration. The uncertainty of their positions is assumed to be described by a 3-D zero mean, static gaussian 

distribution.  

 

The calculation of collision probability using the encounter plane is shown in the equation shown below: 
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where: 

 

• 𝑃 – Probability of collision 

• 𝜎𝒙 – Combined covariance’s semi-minor axis in the encounter plane  

• 𝜎𝒚 – Combined covariance’s semi-major axis in the encounter plane 

• 𝐻𝐵𝑅 – Hard body radius 

• 𝑥𝑚 – miss distance along the semiminor axis 

• 𝑦𝑚 – miss distance along the semimajor axis 

 

The HBR is derived from a circular simplification of object profile, and the miss distance values are results of 

propagation based on current observations. 𝜎𝒙 and 𝜎𝑦 are the semi-minor and semi-major axis of the projected 2-D 

covariance that lies in the encounter plane. The derivation of these quantities from the 3-D covariance matrix will not 

be listed, as the details can be found in Alfano’s paper.  

 

As previously mentioned, the problem with using Pc as a primary factor for determining a course of action leading up 

to TCA, is not knowing how Pc will evolve over time. A high value Pc 3 days before TCA will often see a significant 

decrease before 1 day to TCA. Currently CARA operators will receive approximately 1000 CDMs at approximately 

8-hour intervals. Most are not significant events with very low Pc. However, as time progresses and increasing 

numbers of RSOs are launched, the chance of a significant event occurring will become exponentially higher. Then 

the issue of deciding which events to prioritise becomes much more difficult (with compounding limitations on 

decision making in a complex multi-variable environment under time pressure).  

 

To perform forecasts of covariance for an object using CDM data, each covariance model comprised a series of GPR 

sub-models for each entry of the symmetrical correlation matrix. The correlation matrix is simply a transformation of 

the covariance matrix, which was introduced to eliminate asymptotic calculations and to address model stability when 

using logarithmically-scaled covariances.  
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As seen in the equation above, there are 6 distinct terms that make up the matrix. These terms contain information on 

positional uncertainty in the RIC frame, as well as their respective correlations. From examining the database of 

CDMs, general trends for each correlation matric parameter were determined. By performing a detailed sensitivity 

analysis for covariance outputs across the CDM database, a list of 17 potential variables was chosen as inputs to the 

covariance model. These variables contain information about object energy dissipation, orbital data, and time to closest 

approach.  

 

To produce the collision probabilities of the future CDMs, the tool performs a time series prediction of each of the 

elements of the correlation matrix, then reconstructs the covariance matrix. After a transformation of the covariance 

predictions for each object and then into the encounter plane, each prediction forms a 2-D covariance ellipse. An 

example of the forward covariance propagation is shown in Fig. 3. This figure is produced at ~3 days before TCA for 



a particular event. The uncertainty ellipsoid for the conjunction event at 3 days before TCA is represented by the most 

outer ellipse. All the encompassing ellipses are the predicted uncertainty behavior, all the way up to 0.25 days to TCA. 

The red circle in the figure represents the combined hard body object. Since the red circle remains fully encompassed 

by the 1-σ covariance ellipse, an operator is given greater confidence that the conjunction should be taken seriously.  

 

1.4 Miss distance volatility model 
 

The calculation of Pc also involves another critical input, miss distance. Miss distance is the calculated distance 

between the 2 objects of interest at TCA. A significant factor impacting the effectiveness of the traditional use of Pc 

to decide on a maneuver several days ahead of TCA is the volatility over time in the predicted miss distance vector.  

 

There are many factors that make predicting miss distance difficult, with the most critical being the effect of space 

weather on atmospheric density, hence drag and propagated position. Accurate atmospheric density models are an 

area of active research, however there is still significant uncertainty when it comes to predicted future solar activity. 

There are limitations when predicting the effect of solar activity over 2 days to TCA. Due to the rotation of the Sun 

and a lack of visibility of the opposing side of the Sun to earth, there are no detailed and continuous measurements of 

the Sun’s behavior. This problem may evolve as our understanding of the Sun improves and satellites are launched to 

monitor activity in more detail.  

 

Rather than predicting miss distance itself, we modelled the miss distance volatility and solar indices to determine a 

‘cone of expected changes in miss distance”. Rather than outputting a deterministic result using a constant miss 

distance, leading to a single Pc prediction at each time increment (as covariance forecasts are assumed as point 

predictions), the MDSS tool calculates the miss distance variance and truncates over time. Bootstrapping is then used 

to obtain a distribution of values over time. This is illustrated below in Fig. 4, where an initial CDM at ~3 days with 

a miss distance of ~3km is propagated to TCA. 

 

As the atmosphere models have a limited predictive power as well as limitations in secondary object observations, the 

predicted miss distances tend to drift from a particular observation, as represented in the growing variance in the miss 

distance distribution over time. By using this method, the tool is able determine a level of likelihood of an event to 

drop off in collision probability, as discussed further in the following section. 

Fig. 3 Combined covariance prediction from 3 days in increments of 0.5 days up to 0.25 

days before TCA. The most outer ellipse represents the combined covariance at 3 days, and 

the smallest ellipse is the predicted covariance at 0.25 days to TCA. 



 
Fig. 4 Miss distance prediction, demonstrating potential miss distance ranges based on conditions at 3 days before 

TCA. 

1.5 Pc prediction 
 
Combining the covariance and miss distance predictions, the tool generates a distribution of future Pc as demonstrated 

in Fig 5. The example showcases the tool’s prediction of the Pc behavior from 2.6 days to TCA, using only the CDM 

pair, received at 2.6 and 2.9, days before TCA. The whiskers of the blue solution represent the Pc distribution resulting 

from the miss distance distribution mentioned in the previous section. A shorter box and whiskers plot provides a 

higher level of confidence in the Pc prediction over time, given that the miss distance does not deviate significantly 

over the 2.6 days period. 

 

 

 

 
Fig. 5 Pc prediction, demonstrating potential Pc ranges based on conditions at 2.6 days before TCA in blue, and 

compared with the measured Pc evolution in green. 

 

 

 

 

 

 

 



 

2. URGENCY METRIC 
 

The predictions produced by our models, well as other meaningful conjunction information such as current Pc and 

time to maneuver commitment point, are quantified as time variable metrics in the range [0, 1]. Each of these metrics 

was combined using a weighted average to produce a single quantified Urgency Metric. However, an urgency value 

on its own can be ambiguous in its meaning. Therefore, the tool employs a useful and actionable recommendation. 

Each total urgency value (UT) is categorized into one of the 5 color-coded bins, each one corresponding to a specific 

advised action. The advised actions are (from least to most urgent): 

 

• Event dismissal (dark green): event can be dismissed as Pc is very unlikely to increase to a dangerous 

level at MCP 

• Event monitoring (light green): Maintain monitoring of event but is currently not of great concern 

• Preparatory mitigation planning (yellow): Begin initial phase/preparation for, potential maneuver 

planning  

• Substantial mitigation planning (light red) Screen maneuver to ensure it does not lead to other collision 

events and prepare to act at any point 

• Mitigation execution (red): Execute planned maneuver 

 

Fig. 6 Example urgency graph of time leading up to a conjunction event. 

As mentioned, a core utility of the MDSS is to provide enhanced actionable decision support compared to traditional 

methods. For satellite operators that are new to the field or constrained by a budget, it is important to prioritise events 

that are significant and mitigate ‘wasted’ preparation time on insignificant events. With the categorisation of 

recommended actions, an owner can execute a precise action ahead of time (compared with standard MCP procedure) 

to ensure maximum operational efficiency. To maximise the amount of information extracted out of a single CDM, 

each metric encompasses different aspects of event data, both from the CDMs and ISG’s models: 

 

• Drop-off metric encapsulates the percent chance of a Pc drop off prior to the maneuver commitment 

point 

• Current Pc metric: urgency based on the Pc of most current CDM 

• Maximum Pc metric: the highest predicted median Pc up until TCA 

• Time to maneuver commitment point: the time difference between current CDM to the MCP 



  
Fig. 7 Total urgency UT flow chart. 

2.1 MDSS parameter tuning  

 

The MDSS tool is composed of a total of 17 tuneable parameters αi, associated with the metric functions, metric 

weightings, and recommendation bins. To ensure that the action recommendation reflects the typical action that an 

experienced operator would normally take, ISG collaborated with the NASA CARA team to ensure that outputs reflect 

an intuitive, interpretable representation of conjunction information and provide advisory actions that correspond with 

those that would be taken by experienced operators. Operations in different companies may have different strategies 

when it comes to satellite management, so this process can be repeated with the same modelling framework for more 

‘bespoke’ solutions.  

 

As adjusting 17 independent settings is a high-dimensional problem, the space-filling technique of Latin hypercube 

sampling (LHS) is used. Compared to standard Monte Carlo sampling, LHS uses an orthogonal sampling technique 

that covers an input space more broadly and efficiently. This is illustrated in Fig. 8, where a sample is drawn from a 

bivariate distribution. Comparing the samples from 7a & 7b, we see that 7b tends to produce samples that are a greater 

distance from its closest neighbour.  

 



 
Fig. 8 Comparison of random sampling and Latin hypercube sampling (LHS) for the generation of initial parameter 

guesses [5]. 

 

Using this method, a comprehensive search and optimization of the best parameter settings could be performed for 

different time increments to TCA. The performance of the best combination of the 17 parameters is discussed in the 

results section. 

 

 

 

 

 

 

2.2 Drop-off metric 

 

The drop off metric can be derived from the uncertainty in the timeseries of Pc prediction data, as shown in Fig. 9. A 

cubic-spline interpolation is used to interpolate each rank of Pc predictions over time. As discussed previously, the Pc 

distribution is the result of the bootstrapping method that generates a range of miss distances and the covariance 

shrinkage. The collection of blue lines in the graph is a spread of individual Pc predictions based on a distribution of 

miss distance. For this metric, the distribution is ranked according to its magnitude. Each rank is then interpolated 

with the same rank of a different time prediction to form a function. This is illustrated by the individual blue trajectories 

in Fig. 9.  

This sample was a prediction of the Pc at 3.5 days from TCA. By taking a vertical cross-sectional slice of the 

distribution at MCP, which is chosen to be at 0.5 days from TCA, a histogram such as in Fig. 10 is collected. 

 



 
Fig. 9 Spline interpolation of the Pc prediction. 

 

 
Fig. 10 Cross-section of the Pc distribution (red line indicating drop-off threshold). 

The x-axis of the histogram represents the Pc value, and the y-axis counts the number of predicts that lie in a certain 

Pc range. With a selected drop-off threshold, summing all the counts of data points that are lower than the said 

threshold will give the percentage chance of seeing a drop off at MCP. For example, at this point, the drop off threshold 

is set to a value of 1 × 10−6. To calculate the percent chance of drop off, the sum of the number of data points left of 

the green line is measured as a percentage of the total number of samples in the miss distance bootstrapping process. 

However, to reduce the number of false alarms and increase prediction accuracy, this drop-off threshold is set as a 

function of time to TCA. 

 

 

2.3 Current Pc metric 

 

The current Pc metric simply takes the current Pc value, contained in the current CDM dataset, and assigns it an 

associated urgency. Following discussion with CARA, it was determined that at different stages to TCA, the same 

value of Pc will raise a different level of concern to the operator. When the conjunction event is more than 3 days 

away, Pc values in the region of 3 × 10−5 may be of concern. Whereas approaching MCP, CARA operators tend to 

have a higher threshold of 1 × 10−4 as a maneuver planning threshold. 



 

2.4 Maximum Pc metric 

 

The Maximum predicted Pc metric works in a similar fashion to the current Pc metric. It examines the highest point 

prediction (mode/peak of the Pc distribution) from the predicted intervals. This metric is used because of the known 

shape of the Pc vs. time curve, where the Pc tends to increase then decrease over time when miss distance is static. If 

the Pc of an event goes up far into the red region (>10−4), operators tend to pay more attention to the event, even if 

they think it is likely to drop off. This metric captures that potential rise in Pc, considering the geometry of the event 

and miss distance volatility. Note that even though the prediction of the tool is a distribution, this metric uses the 

median value of the Pc prediction interval at each prediction step. 

 

2.5 Time to MCP metric 

 

In general, as indicated by CARA operators, planning for a conjunction event takes place roughly 2-3 days before 

TCA. The Time to MCP metric is implemented to reduce the urgency of an event when it is a long period away from 

TCA. High-Pc events will still contribute to a relatively suitable course of action, but the Time to MCP metric allows 

for a smooth transition of the overall urgency value as TCA is approached. 

 

 

3. RESULTS AND DISCUSSION 

 

To assess the performance of the MDSS, an unseen set of the CDM database was used. Although the decision to 

maneuver is binary, the actions leading up to the decision point are not. Recall the 5 bin categories of recommended 

action: event dismissal (dark green), event monitoring (light green), preparatory mitigation action (yellow), substantial 

mitigation planning (light red) and mitigation execution (dark red).  

 

To understand how well the tool performed at different times to TCA, the analysis segmented the CDMs into 5 time 

slots: 3, 2.5, 2, 1.5 and 1 days to TCA. Furthermore, each conjunction event (relating to all CDMs of the same 

conjunction) is labeled according to its Pc produced by the CDM immediately before the MCP. Although the 

conjunction behavior can still change after the MCP, it is irrelevant in a real-life scenario as you cannot operate via 

hindsight. These labels are green (Pc < 1 × 10−7), yellow (1 × 10−7 < Pc < 1 × 10−4) and red (Pc >1 × 10−4). 

 

 

 
 

There are 3 prediction metrics that were used to quantify the performance: recall, precision, and accuracy. The formal 

mathematical definitions for precision and recall are shown above. To illustrate their definitions, example calculations 

are shown in Fig. 11 and 12, derived from a set of 2282 predictions at approximately 2 days before TCA. All the 

results will be shown in a similar format as the 2 tables, with the rows representing prediction category and the columns 

representing type of event (based on Pc at MCP). In Fig. 11, to calculate the prediction rate of light and dark red (event 

monitoring), recall would be calculated by performing a sum of the red column and dividing (84+2) by 115 = 75%. 

The purpose of recall is to answer the question “for a given type of event (green, yellow, red), what percentage of 

predictions is classified correctly?”. Alternatively, as demonstrated in Fig. 12, precision is determined by calculating 

the percentage of predictions that are correct. In the Fig. 12 Example the precision for the dark green prediction would 

be 12 divided by 12=100% 



 
Fig. 11 Recall calculation on red Pc events. 

 

 
Fig. 12 Precision calculation on red Pc events. 

The MDSS tools capability at the 3 and 2 days epoch before TCA is demonstrated in Fig 13. As shown, when 

considering recall the tool is able to identify 74.7% of all red events to be of significance 2 days before TCA (the 2 

green entries in the red Pc column) and 53.3% at the 3 day mark. The green-highlighted entries are combined, as they 

represent the type of predictions that operators prioritise. The top left 2 squares represent the green events that are 

correctly being categorised as low-importance events. The bottom right 2 squares represent events that ended with 

high Pc and are correctly identified. The advantage this provides is that not only do these CDMs indicate a high Pc, 

but by having higher urgency indicators (light red and dark red predictions) the tool provides greater confidence in 

decision making. Examining the green Pc event column, MDSS also demonstrates an ability to eliminate 65.5% and 

74.5% of all green events from being prioritized, reducing unnecessary preparation.  

 

 

 
Fig. 13 Prediction results in recall and precision at 3 and 2 days before TCA. 

When performing an analysis of precision, the tool is able to achieve a success rate of 90.1% and 93.4% for light green 

predictions. This improves operator confidence when using the tool, as whenever ‘event monitoring’ is advised they 



can allocate less resources to that conjunction. At 3 days to TCA, we implemented a risk reduction mechanism to 

prevent false rejection early on during the event, effectively reducing the predicted dark red columns to 0%. 

 

One of the goals during the development phase is to ensure that the possibility of the following 2 predictions is reduced: 

 

- Prediction of mitigation execution (dark red) for an actual green event 

- Prediction of event dismissal (dark green) for an actual red event 

 

The first is defined as a type I error and the second as a type II error. Consulting the acceptable range of error rate 

with the CARA group, it was concluded that both rates would have to be close to ~0%, as they are the most disruptive 

to the whole operation. The Type I error would lead to significant attention placed on an event that was not dangerous 

(proven by the CDM at MCP). The worst case would be a type II error, where a dangerous conjunction was falsely 

dismissed too early. The consequence of the latter would lead to a catastrophic outcome if the two RSOs collided, 

resulting not only in the loss of satellites but also polluting the space environment. For this reason, the tool is tuned to 

safeguard against providing event dismissal advice unless the event can truly be dismissed. As shown in the Fig. 13 

in the bottom left and top right of each table, the error entries are kept at the ideal 0.0% minimum. 

 

 

 
Fig. 14 Accuracy calculation 

 

Furthermore, accuracy is defined as a percentage of the testing set that the tool predicted correctly in relation to the 

entire event test set. In this case, the definition for correct predictions before 2 days to TCA is defined as: 

 

- For green Pc events: event dismissal and event monitoring (dark green and light green) 

- For yellow Pc events: event monitoring, preparatory action and substantial mitigation planning (light green, 

yellow and dark red) 

- For red Pc events: substantial mitigation planning and mitigation execution (light red and dark red) 

 

An example calculation is illustrated in Fig. 14 by dividing the sum of entries within the red rectangles by the blue 

rectangle. Using the MDSS tool, a prediction accuracy of 70.9% and 85.5% at 3 and 2 days respectively is achieved. 

This level of accuracy indicates that the tool provides a high level of confidence for decision-making by separating 

high danger and insignificant events, as well as assisting with shifting the maneuver process earlier in the timeline. 

Outside of these >50000 events, there were only 3 cases where the Pc increased drastically at 1 day before TCA, 

resulting in a type II error. All three of these events were classified by experienced operators as events that could not 

have been predicted. These events were associated with secondary objects that were poorly tracked and did not receive 

sufficient tracking until very close to TCA. 

 

One area of future work is to improve the precision performance of the light red category. Due to the imbalanced 

nature of the CDM database set, where most events are green and there are few red events in comparison, even a small 

proportion of green events predicted to be urgent will skew the precision metric. Another aspect that impacts the final 

output is the Pc calculation method, as method employed to determine Pc uses a combined hard body radius of 20m 

to perform the integration. This is a conservative method of determining Pc, as the integration encompasses a larger 

area than that of most RSOs and orbital debris. This conservative approach ensures an additional layer of safety against 

poor tracking; however, a higher-fidelity Pc calculation could lead to lower number of substantial mitigation planning 

predictions for green Pc event types. 



 

 

4. CONCLUSION 

 

The MDSS is a conjunction analysis tool that was successfully developed to assist operators in resource management 

and early maneuver planning. It introduces statistical rigor to satellite operations, regardless of experience, as part of 

a conjunction analysis routine. The output of the software is an urgency value that lies between the range of [0,1] and 

is binned into 1 of 5 predefined action recommendations. These predefined actions are calibrated to assist operators 

in making decisions, as part of an automated workflow, or as an added layer of analysis for high interest events that 

are more complex. The MDSS makes future Pc and miss distance predictions by utilizing a set of 13 Gaussian process 

models to predict time series covariance and miss distances distribution from a CDM epoch until TCA. Using the 

prediction results and combining it with additional CDM data, the tool calculates a weighted sum of 4 individual 

metrics: current Pc, maximum predicted Pc, percentage chance of Pc drop-off and time to MCP.  

 

To convey the correct course of action for a given urgency, a series of workshops with NASA CARA were conducted 

to match the operators’ intuition when considering past events. Using events from the CARA CDM database, the 

MDSS was able to achieve a prediction accuracy of 70.9% and 85.5% at 3 and 2 days before TCA respectively. 

Furthermore, the tool correctly predicted the suitable course of action 74.5% and 74.7% for green and red events, up 

to 2 days before TCA. Importantly, in a test set of over 2000 high interest events, the tool produced 0 false alarms for 

maneuver execution, as well as 0 events that were dismissed entirely but ended up with a Pc> 1 × 10−4 at MCP. This 

indicates that the utilization of this tool will reliably streamline operational resources and reduce the likelihood of a 

collision not being prevented. Thus, the MDSS tool can provide noticeable improvement to any SSA and satellite 

operations that seek to optimize their workflow and reduce resource expenditure. Furthermore, we anticipate that the 

MDSS will assist SSA operations in keeping pace with the growing number of conjunctions, and potentially introduce 

a standard practice for operators. 

 

The MDSS is unique in the field of space traffic management as it combines physical and statistical models to provide 

operators with a rigorous recommended course of action well ahead of a maneuver commitment point. The tool is 

undergoing further refinement at CARA and by ISG to prepare for commercial deployment in later 2022.  
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